首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   27篇
  2022年   4篇
  2021年   11篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   14篇
  2015年   18篇
  2014年   11篇
  2013年   26篇
  2012年   36篇
  2011年   17篇
  2010年   9篇
  2009年   8篇
  2008年   19篇
  2007年   11篇
  2006年   14篇
  2005年   19篇
  2004年   15篇
  2003年   8篇
  2002年   15篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1996年   2篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   7篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
31.
Barth syndrome (BTHS), an X-linked disease associated with cardioskeletal myopathy, neutropenia, and organic aciduria, is characterized by abnormalities of card­iolipin (CL) species in mitochondria. Diagnosis of the disease is often compromised by lack of rapid and widely available diagnostic laboratory tests. The present study describes a new method for BTHS screening based on MALDI-TOF/MS analysis of leukocyte lipids. This generates a “CL fingerprint” and allows quick and simple assay of the relative levels of CL and monolysocardiolipin species in leukocyte total lipid profiles. To validate the method, we used vector algebra to analyze the difference in lipid composition between controls (24 healthy donors) and patients (8 boys affected by BTHS) in the high-mass phospholipid range. The method of lipid analysis described represents an important additional tool for the diagnosis of BTHS and potentially enables therapeutic monitoring of drug targets, which have been shown to ameliorate abnormal CL profiles in cells.  相似文献   
32.
Early afterdepolarizations (EADs) associated with prolongation of the cardiac action potential (AP) can create heterogeneity of repolarization and premature extrasystoles, triggering focal and reentrant arrhythmias. Because the L-type Ca2+ current (ICa,L) plays a key role in both AP prolongation and EAD formation, L-type Ca2+ channels (LTCCs) represent a promising therapeutic target to normalize AP duration (APD) and suppress EADs and their arrhythmogenic consequences. We used the dynamic-clamp technique to systematically explore how the biophysical properties of LTCCs could be modified to normalize APD and suppress EADs without impairing excitation–contraction coupling. Isolated rabbit ventricular myocytes were first exposed to H2O2 or moderate hypokalemia to induce EADs, after which their endogenous ICa,L was replaced by a virtual ICa,L with tunable parameters, in dynamic-clamp mode. We probed the sensitivity of EADs to changes in the (a) amplitude of the noninactivating pedestal current; (b) slope of voltage-dependent activation; (c) slope of voltage-dependent inactivation; (d) time constant of voltage-dependent activation; and (e) time constant of voltage-dependent inactivation. We found that reducing the amplitude of the noninactivating pedestal component of ICa,L effectively suppressed both H2O2- and hypokalemia-induced EADs and restored APD. These results, together with our previous work, demonstrate the potential of this hybrid experimental–computational approach to guide drug discovery or gene therapy strategies by identifying and targeting selective properties of LTCC.  相似文献   
33.
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.  相似文献   
34.
35.
Many cells exhibit disparate responses to a mechanical stimulus depending on whether it is applied dynamically or statically. In this context, few studies have examined how cells respond to dynamic changes of the extracellular osmolality. In this study, we hypothesized that the cell size change response of cultured articular chondrocytes would be dependent on the frequency of applied osmotic loading. To test this hypothesis, we developed a novel microfluidic device, to apply hydrostatic pressure-driven dynamic osmotic loading by applying composition modulated flow, adapted from Tang and co-workers. This microfluidic device was used to study osmotic loads of +/-180 mOsm at a frequency up to 0.1 Hz with a constant minimal fluid-shear stress, and permit real-time monitoring of cell responses. Bovine articular chondrocytes were observed to exhibit increasing changes in cell volume with decreasing osmotic loading frequency. When the cell volume response was modeled by an exponential function, chondrocytes exhibited significantly different volume change responses to dynamic osmotic loading at 0.0125 Hz and static osmotic loading applied for a period of four minutes (Delta = +/-180 mOsm relative to the isotonic 360 mOsm). The intracellular calcium response at 0.0125 Hz was also monitored and compared with the response to static loading. Coupled with phenomenological or constitutive models, this novel approach could yield new information regarding cell material properties in response to dynamic loading that may contribute new insights into mechanisms of cellular homeostasis and mechanotransduction.  相似文献   
36.
Maize polyamine oxidase (MPAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyses the oxidation of spermine and spermidine at the secondary amino groups. The structure of MPAO indicates a 30-A long U-shaped tunnel that forms the catalytic site, with residues Glu62 and Glu170 located close to the enzyme-bound FAD and residue Tyr298 in close proximity to Lys300, which in turn is hydrogen-bonded to the flavin N(5) atom via a water molecule (HOH309). To provide insight into the role of these residues in the catalytic mechanism of FAD reduction, we have performed steady-state and stopped-flow studies with wild-type, Glu62Gln, Glu170Gln, Tyr298Phe, and Lys300Met MPAO enzymes. We show that the steady-state enzyme activity is governed by an ionisable group with a macroscopic pK(a) of approximately 5.8. Kinetic analysis of the Glu62Gln, Glu170Gln, and Tyr298Phe MPAO enzymes have indicated (i) only small perturbations in catalytic activity as a result of mutation and (ii) steady-state pH profiles essentially unaltered when compared to the wild-type enzyme, suggesting that these residues do not play a critical role in the reaction mechanism. These kinetic observations are consistent with computational calculations that suggest that Glu62 and Glu170 are protonated over the pH range accessible to kinetic studies. Substitution of Lys300 with Met in MPAO resulted in a 1400-fold decrease in the rate of flavin reduction and a 160-fold decrease in the equilibrium dissociation constant for the Lys300Met-spermidine complex, consistent with a major role for this residue in the mechanism of substrate oxidation. A sizable solvent isotope effect (SIE = 5) accompanies FAD reduction in the wild-type enzyme and steady-state turnover (SIE = 2.3) of MPAO, consistent with the reductive half-reaction of MPAO making a major contribution to rate limitation in steady-state turnover. Studies using the enzyme-monitored turnover method indicate that oxidized FAD is the prominent form during steady-state turnover, consistent with the reductive half-reaction being rate-limiting. Our studies indicate the importance of Lys300 and probable importance of HOH309 to the mechanism of flavin reduction in MPAO. Possible roles for Lys300 and water in the mechanism of flavin reduction are discussed.  相似文献   
37.
Vitamin D is a steroid hormone that, in addition to its well-characterized role in calcium/phosphate metabolism, has been found to have regulatory properties for immune system function. The nuclear vitamin D receptor is widely expressed in tissues, but has also been shown to be regulated by hormones, growth factors, and cytokines. In this study we show that activation of human Vdelta2Vgamma9 T cells by nonpeptidic monoalkyl phosphates such as isopentenyl pyrophosphate leads to the up-regulation of the vitamin D receptor via a pathway that involves the classical isoforms of protein kinase C. We further show that this receptor is active by demonstrating that the ligand 1alpha,25-dihydroxyvitamin D3 (vitD3) significantly inhibits in a dose-dependent fashion phospholigand-induced gammadelta T cell expansion, IFN-gamma production, and CD25 expression. We also show that vitD3 negatively regulates signaling via Akt and ERK and, at high concentrations, potentiates Ag-induced cell death. As such, these data provide further support for the immunoregulatory properties of vitamin D, and suggest that the ability of vitD3 to negatively regulate the proinflammatory activity of gammadelta T cells may contribute to the protection this vitamin affords against inflammatory and autoimmune disorders dependent upon Th1-type responses.  相似文献   
38.
39.
Grapevine is an economically important crop, and the recent completion of its genome makes it possible to study the function of specific genes through reverse genetics. However, the analysis of gene function by RNA interference (RNAi) in grapevine is difficult, because the generation of stable transgenic plants has low efficiency and is time consuming. Recently, transient expression of genes in grapevine leaves has been obtained by Agrobacterium tumefaciens infiltration (agroinfiltration). We therefore tested the possibility to silence grapevine genes by agroinfiltration of RNAi constructs. A construct to express a double strand RNA (dsRNA) corresponding to the defense-related gene VvPGIP1, encoding a polygalacturonase-inhibiting protein (PGIP), was obtained and transiently expressed by agroinfiltration in leaves of grapevine plants grown in vitro. Expression of VvPGIP1 and accumulation of PGIP activity were strongly induced by infiltration with control bacteria, but not with bacteria carrying the dsRNA construct, indicating that the gene was efficiently silenced. In contrast, expression of another defense-related gene, VST1, encoding a stilbene synthase, was unaffected by the dsRNA construct. We have therefore demonstrated the possibility of transient down-regulation of grapevine genes by agroinfiltration of constructs for the expression of dsRNA. This system can be employed to evaluate the effectiveness of constructs that can be subsequently used to generate stable RNAi transgenic plants.  相似文献   
40.
The protective actions of prostacyclin (PGI(2) ) are mediated by cyclic AMP (cAMP) which is reduced by type 4 phosphodiesterases (PDE4) which hydrolyze cAMP. Superoxide (O2(-)) from NADPH oxidase (Nox) is associated with impaired PGI(2) bioactivity. The objective of this study, therefore, was to study the relationship between Nox and PDE4 expression in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with the thromboxane A(2) analog, U46619, 8-isoprostane F(2α) (8IP), or tumor necrosing factor alpha (TNFα) [±iloprost (a PGI(2) analog)] and the expression of PDE4A, B, C, and D and splice variants thereof assessed using Western blotting and qPCR and mRNA silencing of Nox4 and Nox5. Effects on cell replication and angiogenesis were also studied. U46619, 8IP, and TNFα increased the expression of Nox 4 and Nox 5 and all PDE4 isoforms as well as cell replication and tubule formation (index of angiogenesis), effects inhibited by mRNA silencing of Nox4 (but not Nox5) and iloprost and rolipram. These data demonstrate that upregulation of Nox4 leads to an upregulation of PDE4A, B, and D and increased hydrolysis of cAMP which in turn augments cell replication and angiogenesis. This mechanism may be central to vasculopathies associated with endothelial dysfunction since the PGI(2)-cAMP signaling axis plays a key role in mediating functions that include hemostasis and angiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号