首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   30篇
  361篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   10篇
  2018年   6篇
  2017年   15篇
  2016年   14篇
  2015年   23篇
  2014年   28篇
  2013年   26篇
  2012年   32篇
  2011年   23篇
  2010年   18篇
  2009年   18篇
  2008年   18篇
  2007年   13篇
  2006年   13篇
  2005年   9篇
  2004年   22篇
  2003年   8篇
  2002年   13篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1980年   1篇
  1979年   2篇
  1972年   1篇
排序方式: 共有361条查询结果,搜索用时 0 毫秒
71.
Photosynthesis acclimates quickly to the fluctuating environment in order to optimize the absorption of sunlight energy, specifically the photosynthetic photon fluence rate (PPFR), to fuel plant growth. The conversion efficiency of intercepted PPFR to photochemical energy (ɛe) and to biomass (ɛc) are critical parameters to describe plant productivity over time. However, they mask the link of instantaneous photochemical energy uptake under specific conditions, that is, the operating efficiency of photosystem II (Fq′/Fm′), and biomass accumulation. Therefore, the identification of energy- and thus resource-efficient genotypes under changing environmental conditions is impeded. We long-term monitored Fq′/Fm′ at the canopy level for 21 soybean (Glycine max (L.) Merr.) and maize (Zea mays) genotypes under greenhouse and field conditions using automated chlorophyll fluorescence and spectral scans. Fq′/Fm′ derived under incident sunlight during the entire growing season was modeled based on genotypic interactions with different environmental variables. This allowed us to cumulate the photochemical energy uptake and thus estimate ɛe noninvasively. ɛe ranged from 48% to 62%, depending on the genotype, and up to 9% of photochemical energy was transduced into biomass in the most efficient C4 maize genotype. Most strikingly, ɛe correlated with shoot biomass in seven independent experiments under varying conditions with up to r = 0.68. Thus, we estimated biomass production by integrating photosynthetic response to environmental stresses over the growing season and identified energy-efficient genotypes. This has great potential to improve crop growth models and to estimate the productivity of breeding lines or whole ecosystems at any time point using autonomous measuring systems.

Cumulative photochemical energy uptake throughout a fluctuating growing season reveals genotypic differences in photosynthetic performance, respiratory losses, and biomass production efficiency.  相似文献   
72.
The Ts65Dn mouse model of Down syndrome (DS) has an extra segment of chromosome (Chr.) 16 exhibits abnormal behavior, synaptic plasticity and altered function of several signaling molecules. We have further investigated signaling pathways that may be responsible for the impaired hippocampal plasticity in the Ts65Dn mouse. Here we report that calcium/calmodulin-dependent protein kinase II (CaMKII), phosphatidylinositol 3-kinase (PI3K)/Akt, extracellular signal-regulated kinase (ERK), protein kinase A (PKA) and protein kinase C (PKC), all of which have been shown to be involved in synaptic plasticity, are altered in the Ts65Dn hippocampus. We found that the phosphorylation of CaMKII and protein kinase Akt was increased, whereas ERK was decreased. Activities of PKA and PKC were decreased. Furthermore, abnormal PKC activity and an absence of the increase in Akt phosphorylation were demonstrated in the Ts65Dn hippocampus after high-frequency stimulation that induces long-term potentiation. Our findings suggest that abnormal synaptic plasticity in the Ts65Dn hippocampus is the result of compensatory alterations involving the glutamate receptor subunit GluR1 in either one or more of these signaling cascades caused by the expression of genes located on the extra segment of Chr. 16.  相似文献   
73.
It has been demonstrated that naturally occurring coumarins have strong biological activity against many cancer cell lines. In this study, we assessed the cytotoxicity induced by the naturally isolated coumarin A/AA in different cancer cell lines (HeLa, Calo, SW480, and SW620) and in normal peripheral‐blood mononuclear cells (PBMCs). Cytotoxicity was evaluated using the MTT assay. The results demonstrate that coumarin A/AA was cytotoxic in the four cancer cell lines tested and importantly was significantly less toxic in PBMCs isolated from healthy donors. The most sensitive cancer cell line to coumarin A/AA treatment was Hela. Thus, the programmed cell death (PCD) mechanism induced by this coumarin was further studied in this cell line. DNA fragmentation, histomorphology, cell cycle phases, and subcellular distribution of PCD proteins were assessed. The results demonstrated that DNA fragmentation, but not significant cell cycle disruptions, was part of the PCD activated by coumarin A/AA. Interestingly, it was found that apoptosis‐inducing factor (AIF), a proapoptotic protein of the mitochondrial intermembrane space, was released to the cytoplasm in treated cells as detected by the western blot analysis in subcellular fractions. Nevertheless, the active form of caspase‐3 was not detected. The overall results indicate that coumarin A/AA induces a caspase‐independent apoptotic‐like cell death program in HeLa cells, mediated by the early release of AIF and suggest that this compound may be helpful in clinical oncology. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:263–272, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20288  相似文献   
74.
Rice powder extract (RPE) from black and brown rice (Oryza sativa L. indica) improves hepatic lipid accumulation in obese and diabetic model mice via peroxisomal fatty acid oxidation. RPE showed PPARα agonistic activity which did not differ between black and brown RPE despite a higher anthocyanin content in black RPE.  相似文献   
75.

Background

Neutrophil products like matrix metalloproteinases (MMP), involved in bacterial defence mechanisms, possibly induce lung damage and are elevated locally during hospital- acquired pneumonia (HAP). In HAP the virulence of bacterial species is known to be different. The aim of this study was to investigate the influence of high-risk bacteria like S. aureus and pseudomonas species on pulmonary MMPconcentration in human pneumonia.

Methods

In 37 patients with HAP and 16 controls, MMP-8, MMP-9 and tissue inhibitors of MMP (TIMP) were analysed by ELISA and MMP-9 activity using zymography in bronchoalveolar lavage (BAL).

Results

MMP-9 activity in mini-BAL was increased in HAP patients versus controls (149 ± 41 vs. 34 ± 11, p < 0.0001). In subgroup analysis, the highest MMP concentrations and activity were seen in patients with high-risk bacteria: patients with high-risk bacteria MMP-9 1168 ± 266 vs. patients with low-risk bacteria 224 ± 119 ng/ml p < 0.0001, MMP-9 gelatinolytic activity 325 ± 106 vs. 67 ± 14, p < 0.0002. In addition, the MMP-8 and MMP-9 concentration was associated with the state of ventilation and systemic inflammatory marker like CRP.

Conclusion

Pulmonary MMP concentrations and MMP activity are elevated in patients with HAP. This effect is most pronounced in patients with high-risk bacteria. Artificial ventilation may play an additional role in protease activation.  相似文献   
76.
77.
Glucans are polymers of d-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes, including immunomodulation, anticancer activities, pathogen virulence, and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure–function studies and their exploitation. We describe construction of a “glucome” microarray, the first sequence-defined glycome-scale microarray, using a “designer” approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear “homo” and “hetero” and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signaling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides.Glucan polysaccharides are polymers of d-glucose with differing linkages in linear or branched sequences. They occur as storage materials in animals, secreted virulence factors of bacteria, and conserved structural components of cell walls of yeasts, fungi, some bacteria, and plants. Polysaccharides of this type are of considerable interest in biology, medicine, and biotechnology and are acknowledged for their immunostimulatory, anticancer, and health-promoting activities (1, 2); for their elicitor activities in defense responses and signaling in plants (3); and for acting as functional ingredients in human nutrition (4). Unraveling recognition systems that mediate these activities is highly desirable as a lead to effective translational applications.Recognition systems involving glucan polysaccharides include those in mammals, such as recognition of fungal β-glucans by Dectin-1, the major receptor of the innate immune system against fungal pathogens (5), and by natural or vaccine-induced protective antifungal antibodies (6, 7); also recognition of mycobacterial α-glucan by the innate immune receptor DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) (8); those in insects, such as the Drosophila Gram-negative binding protein 3 (GNBP3) sensor protein, which binds β-glucans (9); and those in bacteria, such as Brucella abortus, where cyclic β-glucans can serve as virulence factors (10).Another important class of glucan-recognizing proteins comprises noncatalytic carbohydrate-binding modules (CBMs)1 of bacterial glycoside hydrolases that mediate association with substrate and increase catalytic activity, likely through a targeting mechanism or by driving enzyme specificity (11, 12). Notable examples are CBMs of bacterial cellulolytic enzymes that promote enzymatic deconstruction of intact plant cell walls and that are of industrial significance in the biofuel and bioprocessing sectors (13, 14) and CBMs of rumen or commensal human microbiota with roles in animal and human health (14, 15). CBMs also have roles in other systems: for example, CBM-containing enzymes as virulence factors of bacterial pathogens (16) and CBM-containing human laforin that regulates glycogen metabolism and for which mutations can lead to neurodegenerative disease (17). The number of putative glucan-binding CBMs that have been identified and classified in the Carbohydrate-Active enZyme (CAZy) database (http://www.cazy.org) is expanding, but relatively few have been experimentally investigated for details of carbohydrate binding and fine specificity (11).Searching for and assigning the specificities of glucan-recognizing proteins has thus become increasingly important. It is desirable to have high-throughput and sensitive micro-methods to screen for and characterize ligands for structure–function studies toward effective exploitation in modern therapeutic, nutritional, agricultural, and biofuel-related technologies. Carbohydrate microarrays have served to advance knowledge on specificities of diverse carbohydrate-recognition systems (1822). Where the desired oligosaccharide probes are unavailable, microarrays need to be generated from ligand-bearing glycomes (23). Using a prototype of such designer microarrays of neoglycolipid (NGL)-probes (23) derived from oligosaccharide fragments of glucans rich in β1,3- or β1,6-linked sequences, we showed that linear β1,3-linked glucose sequences with degree of polymerization (DP) 10 or longer are bound by Dectin-1 (24). Recognition of other types of glucan sequences by Dectin-1 and the applicability of microarrays of diverse gluco-oligosaccharide sequences to other glucan-recognizing proteins required investigation. Cummings, Smith, and colleagues have developed the shotgun strategy (20) to create glycome-scale “gangliome” and “human milk glycome” microarrays. In the shotgun microarrays, the printed probes may not be sequence-defined before array construction and require metadata-assisted glycan sequencing (MAGS), which combines MS analysis (25), binding data with glycan-binding proteins or antibodies, and exoglycosidase treatment after printing (26, 27).Mass spectrometry has become a primary technique in carbohydrate structural analysis (28), and electrospray mass spectrometry (ESI-MS) has been used to provide sequence and partial linkage information on various types of oligosaccharides (2933). For neutral oligosaccharides, we have found that tandem MS with collision-induced dissociation (CID-MS/MS) in the negative-ion mode is particularly useful and have successfully applied for oligosaccharide chain and blood-group typing (34, 35) and for branching pattern analysis (36).This is because that some important linkages at certain monosaccharide residues can be unambiguously determined with high sensitivity without the need for derivatization and anion complexation as previously recognized, e.g. in the area of gluco-oligosaccharides, Cl-anion adduction has been used to determine sequences of tetrasaccharides of dextran (37).Here, we describe a strategy using the designer approach combined with negative-ion ESI-CID-MS/MS for constructing a microarray of sequence-defined gluco-oligosaccharides representing major sequences in glucans (glucome microarray) as a tool for screening glucan-recognizing proteins and assigning their recognition motifs (Fig. 1). We selected a comprehensive panel of glucan polysaccharides isolated from plants, fungi, and bacteria with different sequences to represent the glucome. We used finely tuned chemical and enzymatic methods to partially depolymerize the polysaccharides and prepare gluco-oligosaccharide fragments with different chain lengths (up to DP-13 or DP-16). We developed a ESI-CID-MS/MS method that enables linkage and sequence determination of linear or branched gluco-oligosaccharides at high-sensitivity and applied this to the sequencing of oligosaccharide fragments prepared. These sequence-defined gluco-oligosaccharides were then converted into NGL probes and used for construction of the microarray. The oligosaccharides encompassed linear sequences with homo (single) linkages: 1,2-, 1,3-, 1,4-, or 1,6- with α or β configurations; and hetero (multiple) linkages: 1,3-, 1,4, or 1,6-; also branched oligosaccharide sequences with 1,3 and 1,6-linkages.Open in a separate windowFig. 1.Neoglycolipid (NGL)-based designer glucome microarray with mass spectrometry as a tool to assign carbohydrate ligands in glucan recognition. Ligand-bearing glucan polysaccharides, described in supplemental Fig. S1 and Table S1, were selected as sources of gluco-oligosaccharides for construction of the microarray. A total of 121 gluco-oligosaccharide fractions were obtained with different DP after partial depolymerization of polysaccharides and fractionation. ESI-CID-MS/MS method was developed using gluco-oligosaccharides with known sequences and applied to determination of sequences of oligosaccharide fragments from polysaccharides. Gluco-oligosaccharides were converted to NGL probes for microarray construction and interrogation with the glucan-recognizing proteins described in supplemental Table S2.To our knowledge, this is the first sequence-defined glycome-scale microarray constructed. We used 12 selected proteins (antibodies and CBMs) known to target α- or β-glucans to validate the approach. We then applied the microarray analysis to Dectin-1 and DC-SIGN, which revealed new insights into the specificities of these signaling molecules of the innate immune system.  相似文献   
78.
To investigate the genetics of late-onset myasthenia gravis (LOMG), we conducted a genome-wide association study imputation of >6 million single nucleotide polymorphisms (SNPs) in 532 LOMG cases (anti–acetylcholine receptor [AChR] antibody positive; onset age ≥50 years) and 2,128 controls matched for sex and population substructure. The data confirm reported TNFRSF11A associations (rs4574025, P = 3.9 × 10−7, odds ratio [OR] 1.42) and identify a novel candidate gene, ZBTB10, achieving genome-wide significance (rs6998967, P = 8.9 × 10−10, OR 0.53). Several other SNPs showed suggestive significance including rs2476601 (P = 6.5 × 10−6, OR 1.62) encoding the PTPN22 R620W variant noted in early-onset myasthenia gravis (EOMG) and other autoimmune diseases. In contrast, EOMG-associated SNPs in TNIP1 showed no association in LOMG, nor did other loci suggested for EOMG. Many SNPs within the major histocompatibility complex (MHC) region showed strong associations in LOMG, but with smaller effect sizes than in EOMG (highest OR ~2 versus ~6 in EOMG). Moreover, the strongest associations were in opposite directions from EOMG, including an OR of 0.54 for DQA1*05:01 in LOMG (P = 5.9 × 10−12) versus 2.82 in EOMG (P = 3.86 × 10−45). Association and conditioning studies for the MHC region showed three distinct and largely independent association peaks for LOMG corresponding to (a) MHC class II (highest attenuation when conditioning on DQA1), (b) HLA-A and (c) MHC class III SNPs. Conditioning studies of human leukocyte antigen (HLA) amino acid residues also suggest potential functional correlates. Together, these findings emphasize the value of subgrouping myasthenia gravis patients for clinical and basic investigations and imply distinct predisposing mechanisms in LOMG.  相似文献   
79.
Arthrobacter sp. strain TB23 was isolated from the Antarctic sponge Lissodendoryx nobilis. This bacterium is able to produce antimicrobial compounds and volatile organic compounds (VOCs) that inhibit the growth of other Antarctic bacteria and of cystic fibrosis opportunistic pathogens, respectively. Here we report the draft genome sequence of Arthrobacter sp. TB23.  相似文献   
80.
Mexico harbors more than 10% of the planet’s endemic species. However, the integrity and biodiversity of many ecosystems is experiencing rapid transformation under the influence of a wide array of human and natural disturbances. In order to disentangle the effects of human and natural disturbance regimes at different spatial and temporal scales, we selected six terrestrial (temperate montane forests, montane cloud forests, tropical rain forests, tropical semi-deciduous forests, tropical dry forests, and deserts) and four aquatic (coral reefs, mangrove forests, kelp forests and saline lakes) ecosystems. We used semi-quantitative statistical methods to assess (1) the most important agents of disturbance affecting the ecosystems, (2) the vulnerability of each ecosystem to anthropogenic and natural disturbance, and (3) the differences in ecosystem disturbance regimes and their resilience. Our analysis indicates a significant variation in ecological responses, recovery capacity, and resilience among ecosystems. The constant and widespread presence of human impacts on both terrestrial and aquatic ecosystems is reflected either in reduced area coverage for most systems, or reduced productivity and biodiversity, particularly in the case of fragile ecosystems (e.g., rain forests, coral reefs). In all cases, the interaction between historical human impacts and episodic high intensity natural disturbance (e.g., hurricanes, fires) has triggered a reduction in species diversity and induced significant changes in habitat distribution or species dominance. The lack of monitoring programs assessing before/after effects of major disturbances in Mexico is one of the major limitations to quantifying the commonalities and differences of disturbance effects on ecosystem properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号