首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1257篇
  免费   122篇
  1379篇
  2023年   4篇
  2022年   5篇
  2021年   16篇
  2020年   13篇
  2019年   13篇
  2018年   17篇
  2017年   22篇
  2016年   42篇
  2015年   54篇
  2014年   53篇
  2013年   76篇
  2012年   83篇
  2011年   90篇
  2010年   65篇
  2009年   49篇
  2008年   80篇
  2007年   86篇
  2006年   84篇
  2005年   85篇
  2004年   85篇
  2003年   67篇
  2002年   76篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   19篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   3篇
  1993年   12篇
  1992年   5篇
  1991年   7篇
  1990年   2篇
  1989年   6篇
  1988年   10篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   7篇
  1982年   12篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1976年   3篇
  1975年   5篇
  1972年   3篇
  1970年   4篇
排序方式: 共有1379条查询结果,搜索用时 0 毫秒
151.

Background

Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes.

Results

A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P = 1.79 × 10−5) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2.

Conclusions

Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1483-7) contains supplementary material, which is available to authorized users.  相似文献   
152.
153.
154.

Background

Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-αsynuclein (αSYN) MSA model.

Methodology/Principal Findings

MSCs were intravenously applied in aged (PLP)-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc). MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α) in brain lysates together with immunohistochemistry for T-cells and microglia.Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application.

Conclusions/Significance

To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models.  相似文献   
155.
156.
Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuronal loss in Parkinson disease. In addition to autophagy''s significance in mitochondrial integrity, several lines of evidence suggest that mitochondria can also substantially influence the autophagic process. The mitochondria''s ability to influence and be influenced by autophagy places both elements (mitochondria and autophagy) in a unique position where defects in one or the other system could increase the risk to various metabolic and autophagic related diseases.Key words: autophagy, mitochondria, fission, fusion, apoptosis  相似文献   
157.
Molecular studies based on small subunit (SSU) rDNA sequences addressing euglenid phylogeny hitherto suffered from the lack of available data about phagotrophic species. To extend the taxon sampling, SSU rRNA genes from species of seven genera of phagotrophic euglenids were investigated. Sequence analyses revealed an increasing genetic diversity among euglenid SSU rDNA sequences compared with other well‐known eukaryotic groups, reflecting an equally broad diversity of morphological characters among euglenid phagotrophs. Phylogenetic inference using standard parsimony and likelihood approaches as well as Bayesian inference and spectral analyses revealed no clear support for euglenid monophyly. Among phagotrophs, monophyly of Petalomonas cantuscygni and Notosolenus ostium, both comprising simple ingestion apparatuses, is strongly supported. A moderately supported clade comprises phototrophic euglenids and primary osmotrophic euglenids together with phagotrophs, exhibiting a primarily flexible pellicle composed of numerous helically arranged strips and a complex ingestion apparatus with two supporting rods and four curved vanes. Comparison of molecular and morphological data is used to demonstrate the difficulties to formulate a hypothesis about how the ingestion apparatus evolved in this group.  相似文献   
158.
Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, gamma-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent-solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins.  相似文献   
159.
Tuberous sclerosis complex (TSC) is a common genetic disorder in which affected individuals develop mental retardation, developmental brain defects and seizures. The TSC gene products, hamartin and tuberin, form a complex, of which tuberin is assumed to be the functional component being involved in a wide variety of different cellular processes. Here we report that tuberin protein levels are decreased in the frontal cortex of patients with Alzheimer’s disease. In addition, tuberin levels are also decreased in Down syndrome brain samples positive for β-amyloid plaques and neurofibrillary tangles. Analysis of NeuN revealed that this regulation is not a consequence of differences in the amount of postmitotic neurons. This first connection of tuberin to another common disease beside TSC stimulates new approaches to investigate the molecular development and to establish new therapeutic strategies.  相似文献   
160.
A couple was referred for cytogenetic examination due to idiopathic miscarriages. The proband proved to be a carrier of chromosomal translocation and her partner's karyotype was found to be normal. The karyotype of the proband is 46,XX,t(4;22)(q23;q11.2) and can be regarded as a reason of fertility problems in the investigated couple. The risk of further miscarriages is high, but the risk of a progeny with abnormal karyotype is rather low, as the progeny would probably have lethal imbalances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号