首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1436篇
  免费   128篇
  2023年   4篇
  2022年   6篇
  2021年   18篇
  2020年   13篇
  2019年   13篇
  2018年   17篇
  2017年   23篇
  2016年   44篇
  2015年   58篇
  2014年   60篇
  2013年   85篇
  2012年   98篇
  2011年   96篇
  2010年   75篇
  2009年   69篇
  2008年   88篇
  2007年   89篇
  2006年   91篇
  2005年   88篇
  2004年   90篇
  2003年   73篇
  2002年   89篇
  2001年   26篇
  2000年   20篇
  1999年   21篇
  1998年   22篇
  1997年   13篇
  1996年   10篇
  1995年   10篇
  1993年   11篇
  1992年   8篇
  1991年   10篇
  1990年   4篇
  1989年   9篇
  1988年   12篇
  1987年   9篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1983年   9篇
  1982年   13篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   6篇
  1976年   3篇
  1975年   6篇
  1974年   3篇
  1972年   3篇
  1970年   6篇
排序方式: 共有1564条查询结果,搜索用时 31 毫秒
121.
122.
123.

Background

Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes.

Results

A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P = 1.79 × 10−5) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2.

Conclusions

Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1483-7) contains supplementary material, which is available to authorized users.  相似文献   
124.
125.
Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuronal loss in Parkinson disease. In addition to autophagy''s significance in mitochondrial integrity, several lines of evidence suggest that mitochondria can also substantially influence the autophagic process. The mitochondria''s ability to influence and be influenced by autophagy places both elements (mitochondria and autophagy) in a unique position where defects in one or the other system could increase the risk to various metabolic and autophagic related diseases.Key words: autophagy, mitochondria, fission, fusion, apoptosis  相似文献   
126.
The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13-22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress.  相似文献   
127.
Oxidative stress results from a disparity between the generation of reactive oxygen species and the antioxidant ability of the organism. The alteration of the oxidant-antioxidant system brings in adults an effective state of imbalance, which may influence the pathogenesis of many diseases. Oxidative stress also plays a pivotal role in the progression of various pathologies in childhood, through a manipulation of regulatory proteins. In fact, several studies have demonstrated that an unbalanced oxidant-antioxidant status is able to determine toxic effects even during infancy. Therefore, the aim of this review was to summarize current knowledge about the dynamic relationship between oxidative stress and systemic diseases during childhood. In order to better understand these complex mechanisms, a comprehensive review of the literature was done, focusing mainly on pre-pubertal children. In fact, this age-group offers a unique opportunity to exclude confounding factors, especially those related to the metabolic effects induced by puberty. Early identification of these very young patients should be aimed at minimizing the degree of oxidative damage. Only by achieving early diagnosis, will it be possible to identify those children who could benefit from specific therapeutic approaches targeting oxidative stress.  相似文献   
128.
We have examined the use of RNA interference as a means of downregulating gene expression and provide the first comparison of shRNA and artificial miRNA constructs for transgenic livestock. Several in vitro assays were performed to identify the most effective RNAi constructs. shRNA and miRNA constructs achieved significant downregulation of two porcine target genes: the milk whey protein beta-lactoglobulin and the tumour suppressor p53. Results of different assays were, however, sometimes at variance, indicating that no one assay can be relied upon to predict the effectiveness of an RNAi construct. Our findings are that screening of RNAi constructs is most informative if carried out in primary cells that express the target gene and are competent for somatic cell nuclear transfer. Importantly, the use of miRNA constructs makes tissue specific gene knockdown in large animals a realistic possibility.  相似文献   
129.
Malyutina M  Brandt A 《ZooKeys》2011,(144):1-19
Dubinectes infirmussp. n., Munnopsidae, is described from the Argentine Basin, southwest Atlantic, at depths between 4586-4607 m. The new species is distinguished by a narrow rim of the pleotelson posterior margin which is not raising over its dorsal surface; article 3 of the antennula is subequal in length to article 2; distomedial lobes of male pleopod 1 are of same size as distolateral lobes; stylet of male pleopod 2 is subequal in length to protopod; uropod exopod is more than a half of endopod length. Some generic characters which are weakly pronounced in the new species or have different state are defined more precisely in the revised diagnosis of Dubinectes. The modified diagnosis of the genus, a key to the species of Dubinectes as well as the distribution of the genus are presented.  相似文献   
130.

Background

Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-αsynuclein (αSYN) MSA model.

Methodology/Principal Findings

MSCs were intravenously applied in aged (PLP)-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc). MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α) in brain lysates together with immunohistochemistry for T-cells and microglia.Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application.

Conclusions/Significance

To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号