首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2015年   5篇
  2013年   5篇
  2012年   5篇
  2011年   9篇
  2010年   1篇
  2009年   10篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
排序方式: 共有74条查询结果,搜索用时 687 毫秒
51.
Strategies for recovery of ammonia-inhibited thermophilic biogas process, were evaluated in batch and lab-scale reactors. Active methane producing biomass (digested cattle manure) was inhibited with NH(4)Cl and subsequently, 3-5 days later, diluted with 50% of water, or with 50% digested manure, or with 50% fresh manure or kept undiluted. Dilution with fresh cattle manure resulted in the highest methane production rate during the recovery period while dilution with digested cattle manure gave a more balanced recovery according to the fluctuations in volatile fatty acids. Furthermore, the process recovery of a 7600m(3) biogas plant suffering from ammonia inhibition was observed. The ammonia concentration was only gradually lowered via the daily feeding with cattle manure, as is the normal procedure at Danish full-scale biogas plants. Recovery took 31 days with a 40% methane loss and illustrates the need for development of efficient process recovery strategies.  相似文献   
52.
The degradation kinetics of normal and branched chain butyrate and valerate are important in protein-fed anaerobic systems, as a number of amino acids degrade to these organic acids. Including activated and primary wastewater sludge digesters, the majority of full-scale systems digest feeds with a significant or major fraction of COD as protein. This study assesses the validity of using a common kinetic parameter set and biological catalyst to represent butyrate, n-valerate, and i-valerate degradation in dynamic models. The i-valerate degradation stoichiometry in a continuous, mixed population system is also addressed, extending previous pure-culture and batch studies. A previously published mathematical model was modified to allow competitive uptake of i-valerate, and used to model a thermophilic manure digester operated over 180 days. The digester was periodically pulsed with straight and branched chain butyrate and valerate. Parameters were separately optimized to describe butyrate, i-valerate, and n-valerate degradation, as well as a lumped set optimized for all three substrates, and nonlinear, correlated parameter spaces estimated using an F distribution in the objective function (J). Each parameter set occupied mutually exclusive parameter spaces, indicating that all were statistically different from each other. However, qualitatively, the influence on model outputs was similar, and the lumped set would be reasonable for mixed acid digestion. The main characteristic not represented by Monod kinetics was a delay in i-valerate uptake, and was compensated for by a decreased maximum uptake rate (k(m)). Therefore, the kinetics need modification if fed predominantly i-valerate. Butyrate (i- and n-) and n-valerate could be modeled using stoichiometry consistent with beta-oxidation degradation pathways. However, i-valerate produced acetate only, supporting the stoichiometry of a reaction determined by other researchers in pure culture. Therefore, lumping i-valerate stoichiometry with that of n-valerate will not allow good system representation, especially when the feed consists of proteins high in leucine (which produces i-valerate), and the modified model structure and stoichiometry as proposed here should be used. This requires no additional kinetic parameters and one additional dynamic concentration state variable (i-valerate) in addition to the variables in the base model.  相似文献   
53.
Degradation of organic contaminants found in organic waste   总被引:6,自引:0,他引:6  
In recent years, great interest has arisen in recycling of the waste created by modern society. A common way of recycling the organic fraction is amendment on farmland. However, these wastes may contain possible hazardous components in small amounts, which may prevent their use in farming. The objective of our study has been to develop biological methods by which selected organic xenobiotic compounds can be biotransformed by anaerobic or aerobic treatment. Screening tests assessed the capability of various inocula to degrade two phthalates di-n-butylphthalate, and di(2-ethylhexyl)phthalate, five polycyclic aromatic hydrocarbons, linear alkylbenzene sulfonates and three nonylphenol ethoxylates under aerobic and anaerobic conditions. Under aerobic conditions, by selecting the appropriate inoculum most of the selected xenobiotics could be degraded. Aerobic degradation of di(2-ethylhexyl)phthalate was only possible with leachate from a landfill as inoculum. Anaerobic degradation of some of the compounds was also detected. Leachate showed capability of degrading phthalates, and anaerobic sludge showed potential for degrading, polycyclic aromatic hydrocarbons, linear alkylbenzene sulfonates and nonyl phenol ethoxylates. The results are promising as they indicate that a great potential for biological degradation is present, though the inoculum containing the microorganisms capable of transforming the recalcitrant xenobiotics has to be chosen carefully.  相似文献   
54.
Anaerobic biodegradation of linear alkylbenzene sulfonates (LAS) was studied in upflow anaerobic sludge blanket (UASB) reactors operated under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. LAS C12 concentration in the influents was 10 mg.L(-1), and the hydraulic retention time in the reactors was 2 days. Adsorption of LAS C12 was assessed in an autoclaved control reactor and ceased after 115 days. The reactors were operated for a minimum of 267 days; 40-80% removal of LAS C12 was observed. A temperature reduction from 55 degrees C to 32 degrees C for 30 h resulted in process imbalance as indicated by increase of volatile fatty acids (VFA). The imbalance was much more intense in the LAS amended reactor compared with an unamended reactor. At the same time, the process imbalance resulted in discontinued LAS removal. This finding indicates that process stability is a key factor in anaerobic biological removal of LAS. After a recovery period, the removal of LAS resumed, providing evidence of biological anaerobic LAS degradation. The removal remained constant until termination of experiments in the reactor. Biodegradation of LAS in the mesophilic reactor was at the same level as in the thermophilic reactor under stable conditions.  相似文献   
55.
56.

Purpose

Diminishing fossil resources and environmental concerns associated with their vast utilization have been in focus by energy policy makers and researchers. Among the different scenarios put forth to commercialize biofuels, various biorefinery concepts have aroused global interests because of their ability in converting biomass into a spectrum of marketable products and bioenergies. This study was aimed at developing different novel castor-based biorefinery scenarios for generating biodiesel and other co-products, i.e., ethanol and biogas. In these scenarios, glycerin, heat, and electricity were also considered as byproducts. Developed scenarios were also compared with a fossil reference system delivering the same amount of energy through the combustion of neat diesel.

Materials and methods

Life cycle assessment (LCA) was used to investigate the environmental consequences of castor biodiesel production and consumption with a biorefinery approach. All the input and output flows from the cultivation stage to the combustion in diesel engines as well as changes in soil organic carbon (SOC) were taken into account. Impact 2002+ method was used to quantify the environmental consequences.

Results and discussion

The LCA results demonstrated that in comparison with the fossil reference system, only one scenario (i.e., Sc-3 with co-production of significant amounts of biodiesel and biomethane) had 16% lower GHG emissions without even considering the improving effect of SOC. Moreover, resource damage category of this scenario was 50% lower than that of neat diesel combustion. The results proved that from a life cycle perspective, energy should be given priority in biorefineries because it is essential for a biorefinery to have a positive energy balance in order to be considered as a sustainable source of energy. Despite a positive effect on energy and GHG balances, these biorefineries had negative environmental impacts on the other damage categories like Human Health and Ecosystem Quality.

Conclusions

Although biorefineries offer unique features as promising solutions for mitigating climate change and reducing dependence on fossil fuels, the selection of biomass processing options and management decisions can affect the final results in terms of environmental evaluations and energy balance. Moreover, if biorefineries are focused on transportation fuel production, a great deal of effort should still be made to have better environmental performance in Human Health and Ecosystem Quality damage categories. This study highly recommends that future studies focus towards biomass processing options and process optimization to guarantee the future of the most sustainable biofuels.
  相似文献   
57.

Upflow anaerobic sludge blanket (UASB) reactor is one of the most applied technologies for various high-strength wastewater treatments. The present study analysed the microbial community changes in UASB granules during the transition from mesophilic to thermophilic conditions. Dynamicity of microbial community in granules was analysed using high-throughput sequencing of 16S ribosomal RNA gene amplicons, and the results showed that the temperature strictly determines the diversity of the microbial consortium. It was demonstrated that most of the microbes which were present in the initial mesophilic community were not found in the granules after the transition to thermophilic conditions. More specifically, only members from family Anaerolinaceae managed to tolerate the temperature change and contributed in maintaining the physical integrity of granular structure. On the contrary, new hydrolytic and fermentative bacteria were quickly replacing the old members in the community. A direct result from this abrupt change in the microbial diversity was the accumulation of volatile fatty acids and the concomitant pH drop in the reactor inhibiting the overall anaerobic digestion process. Nevertheless, by maintaining deliberately the pH levels at values higher than 6.5, a methanogen belonging to Methanoculleus genus emerged in the community enhancing the methane production.

  相似文献   
58.
Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept   总被引:1,自引:0,他引:1  
The present study investigated the utilization of the whole rapeseed plant (seed and straw) for multi-biofuels production in a biorefinery concept. Results showed that bioethanol production from straw was technically feasible with ethanol yield of 0.15 g ethanol/g dry straw after combined alkaline peroxide and stream pretreatment. The byproducts (rapeseed cake, glycerol, hydrolysate and stillage) were evaluated for hydrogen and methane production. In batch experiments, the energy yields from each feedstock for, either methane production alone or for both hydrogen and methane, were similar. However, results from continuous experiments demonstrated that the two-stage hydrogen and methane fermentation process could work stably at organic loading rate up to 4.5 gVS/(Ld), while the single-stage methane production process failed. The energy recovery efficiency from rapeseed plant increased from 20% in the conventional biodiesel process to 60% in the biorefinery concept, by utilization of the whole rapeseed plant for biodiesel, bioethanol, biohydrogen and methane production.  相似文献   
59.
The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3 d for hydrogen reactor and 12 d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15 d) under organic loading rate (OLR) 3 gVS/(L d). The two-stage process was still stable when the OLR was increased to 4.5 gVS/(L d), while the single-stage process failed. The study further revealed that by changing the HRThydrogen:HRTmethane ratio of the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridiumthermocellum-like species). The changes of substrates and HRT did not change the dominant species. The archaeal community structures in methane reactors were similar both in single- and two- stage reactors, with acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant species.  相似文献   
60.
Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号