首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2015年   5篇
  2013年   5篇
  2012年   5篇
  2011年   9篇
  2010年   1篇
  2009年   10篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
排序方式: 共有74条查询结果,搜索用时 312 毫秒
21.
Aims:  The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H2) producers from digested household solid wastes.
Methods and Results:  A strict anaerobic extreme thermophilic H2 producing bacterial culture was enriched from a lab-scale digester treating household wastes at 70°C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80°C and an optimal pH 8·1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon sources. Growth on glucose produced acetate, H2 and carbon dioxide. Maximal H2 production rate on glucose was 1·1 mmol l−1 h−1 with a maximum H2 yield of 1·9 mole H2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated to the genera Bacillus and Clostridium. Relative abundance of the culture members, assessed by fluorescence in situ hybridization, were 87 ± 5% and 13 ± 5% for Bacillus and Clostridium , respectively.
Conclusions:  An extreme thermophilic, strict anaerobic, mixed microbial culture with H2-producing potential was enriched from digested household wastes.
Significance and Impact of the Study:  This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H2 production from complex organic wastes.  相似文献   
22.
Dynamics of the anaerobic process: effects of volatile fatty acids   总被引:6,自引:0,他引:6  
A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected both CH(4) yield, pH, and gas production and that a unique reaction pattern was seen for the higher VFAs as a result of these pulses. In this study, two thermophilic laboratory reactors were equipped with a novel VFA-sensor for monitoring specific VFAs online. Pulses of VFAs were shown to have a positive effect on process yield and the levels of all VFA were shown to stabilize at a lower level after the biomass had been subjected to several pulses. The response to pulses of propionate or acetate was different from the response to butyrate, iso-butyrate, valerate, or iso-valerate. High concentrations of propionate affected the degradation of all VFAs, while a pulse of acetate affected primarily the degradation of iso-valerate or 2-methylbutyrate. Pulses of n-butyrate, iso-butyrate, and iso-valerate yielded only acetate, while degradation of n-valerate gave both propionate and acetate. Product sensitivity or inhibition was shown for the degradation of all VFAs tested. Based on the results, it was concluded that measurements of all specific VFAs are important for control purposes and increase and decrease in a specific VFA should always be evaluated in close relationship to the conversion of other VFAs and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems.  相似文献   
23.
A new VFA sensor technique for anaerobic reactor systems   总被引:3,自引:0,他引:3  
A key parameter for understanding and controlling the anaerobic biogas process is the concentration of volatile fatty acids (VFA). However, this information has so far been limited to off-line measurements using labor-intensive methods. We have developed a new technique that has made it possible to monitor VFA on-line in one of the most difficult media: animal slurry or manure. A novel in situ filtration technique has made it possible to perform microfiltration inside a reactor system. This filter enables sampling from closed reactor systems without large-scale pumping and filters. Furthermore, due to its small size it can be placed in lab-scale reactors without disturbing the process. Using this filtration technique together with commercially available membrane filters we have constructed a VFA sensor system that can perform automatic analysis of animal slurry at a frequency as high as every 15 minutes. Reproducibility and recovery factors of the entire system have been determined. The VFA sensor has been tested for a period of more than 60 days with more than 1,000 samples on both a full-scale biogas plant and lab-scale reactors. The measuring range covers specific measurements of acetate, propionate, iso-/n-butyrate and iso-/n-valerate ranging from 0.1 to 50 mM (6-3,000 mg). The measuring range could readily be expanded to more components and both lower and higher concentrations if desired. In addition to the new VFA sensor system, test results from development and testing of the in situ filtration technique are being presented is this article.  相似文献   
24.
Thermophilic anaerobic digestion of livestock waste: the effect of ammonia   总被引:5,自引:0,他引:5  
Ammonia concentrations of 4 g N/l or more inhibited thermophilic digestion of cattle manure. A stable digestion of cattle manure could be maintained with ammonia concentrations up to 6 g N/l after 6 months of operation. However, the methane yield was reduced and the concentration of volatile fatty acids increased from 1 to 3 g/l as acetate, compared to controls with an ammonia concentration of 2.5 g N/l. The temporary strong inhibition following an one-step increase in ammonia concentration was reduced by applying a gradual increase. The specific methanogenic activity of ammonia-inhibited reactors (6 g N/l) with acetate or hydrogen as substrate was reduced by 73 and 52%, respectively. Tests of ammonia toxicity on the acetate- and hydrogen-utilizing populations showed a higher sensitivity of the aceticlastic compared to the hydrogenotrophic methanogens; the specific growth rate for the aceticlastic methanogens was halved at ammonia concentrations of 3.5 g N/l, compared to 7 g N/l for the hydrogenotrophic methanogens. Correspondence to: B. K. Ahring  相似文献   
25.
Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease of bicarbonate concentration were related with the increase of the H2 flow rate. The CH4 content increased from 78.4 % to 90.2 % with the increase of the H2 flow rate from 930 to 1,440 ml/(l?day), while the pH in the reactor remained below 8.0. An even higher CH4 content (96.1 %) was achieved when the H2 flow rate was increased to 1,760 ml/(l?day); however, the pH increased to around 8.3 due to bicarbonate consumption which hampered the anaerobic process. The biofilm formed on the HFM was found not to be beneficial for the process since it increased the resistance of H2 diffusion to the liquid. The study also demonstrated that the biofilm formed on the membrane only contributed 22–36 % to the H2 consumption, while most of the H2 was consumed by the microorganisms in the liquid phase.  相似文献   
26.
In situ biogas upgrading was conducted by introducing H2 directly to the anaerobic reactor. As H2 addition is associated with consumption of the CO2 in the biogas reactor, pH increased to higher than 8.0 when manure alone was used as substrate. By co-digestion of manure with acidic whey, the pH in the anaerobic reactor with the addition of hydrogen could be maintained below 8.0, which did not have inhibition to the anaerobic process. The H2 distribution systems (diffusers with different pore sizes) and liquid mixing intensities were demonstrated to affect the gas-liquid mass transfer of H2 and the biogas composition. The best biogas composition (75:6.6:18.4) was obtained at stirring speed 150 rpm and using ceramic diffuser, while the biogas in the control reactor consisted of CH4 and CO2 at a ratio of 55:45. The consumed hydrogen was almost completely converted to CH4, and there was no significant accumulation of VFA in the effluent. The study showed that addition of hydrogen had positive effect on the methanogenesis, but had no obvious effect on the acetogenesis. Both hydrogenotrophic methanogenic activity and the concentration of coenzyme F420 involved in methanogenesis were increased. The archaeal community was also altered with the addition of hydrogen, and a Methanothermobacter thermautotrophicus related band appeared in a denaturing gradient gel electrophoresis gel from the sample of the reactor with hydrogen addition. Though the addition of hydrogen increased the dissolved hydrogen concentration, the degradation of propionate was still thermodynamically feasible at the reactor conditions.  相似文献   
27.
Desugared molasses (DM), a syrup residue from beet-molasses, was investigated for biogas production in both batch and in continuously-stirred tank reactor (CSTR) experiments. DM contained 2-3 times higher concentration of ions than normal molasses, which could inhibit the biogas process. The effect of sodium and potassium concentration on biogas production from manure was also investigated. Fifty percent inhibition occurred at sodium and potassium concentration of 11 and 28 g/L, respectively. The reactor experiments were carried out to investigate the biogas production from DM under different dilutions with water and co-digestion with manure. Stable operation at maximum methane yield of 300 mL-CH4/gVS-added was obtained at a mixture of 5% DM in cow manure. The biogas process was inhibited at DM concentrations higher than 15%. Manure was a good base substrate for co-digestion, and a stable anaerobic digestion could be achieved by co-digesting DM with manure at the concentration below 15% DM.  相似文献   
28.
29.
The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H2 addition was 22% higher, compared to the control reactor only fed with manure. The CO2 content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis. Biotechnol. Bioeng. 2012; 109:1088–1094. © 2011 Wiley Periodicals, Inc.  相似文献   
30.
Two continuously stirred tank reactors were operated with household solid waste at 70 degrees C, for hydrogen and methane production. The individual effect of hydraulic retention time (HRT as 1, 2, 3, 4, and 6 days) at pH 7 or pH (5, 5.5, 6, 6.5, 7) at 3-day HRT was investigated on the hydrogen production versus methanogenesis. It was found that at pH 7, the maximum hydrogen yield was 107 mL-H(2)/g VS(added) (volatile solid added) but no stable hydrogen production was obtained as after some time methanogenesis was initiated at all tested HRTs. This demonstrated that sludge retention time alone was not enough for washing out the methanogens at pH 7 under extreme-thermophilic conditions. Oppositely, we showed that keeping the pH level at 5.5 was enough to inhibit methane and produce hydrogen stably at 3-day HRT. However, the maximum stable hydrogen yield was low at 21 mL-H(2)/g VS(added).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号