首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   46篇
  2022年   7篇
  2021年   15篇
  2020年   11篇
  2019年   12篇
  2018年   8篇
  2017年   9篇
  2016年   20篇
  2015年   27篇
  2014年   36篇
  2013年   61篇
  2012年   59篇
  2011年   70篇
  2010年   35篇
  2009年   31篇
  2008年   65篇
  2007年   55篇
  2006年   70篇
  2005年   75篇
  2004年   51篇
  2003年   33篇
  2002年   51篇
  2001年   25篇
  2000年   15篇
  1999年   9篇
  1998年   11篇
  1997年   13篇
  1996年   6篇
  1995年   17篇
  1994年   10篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   7篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1978年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1965年   1篇
  1940年   1篇
  1938年   1篇
排序方式: 共有985条查询结果,搜索用时 203 毫秒
11.
The unprecedented Friedländer reaction of densely functionalized 2-amino-3-cyano-4H-pyrans (1) with cyclohexanone has afforded in one step and good yield 5-amino-4-aryl-3-ethoxycarbonyl-2-methyl-6,7,8,9-tetrahydro-4H-pyran[2,3-b]quinolines (2), novel amino-substituted fused pyran derivatives. These compounds are new tacrine analogues.  相似文献   
12.
Abstract: l -DOPA is toxic to catecholamine neurons in culture, but the toxicity is reduced by exposure to astrocytes. We tested the effect of l -DOPA on dopamine neurons using postnatal ventral midbrain neuron/cortical astrocyte cocultures in serum-free, glia-conditioned medium. l -DOPA (50 µ M ) protected against dopamine neuronal cell death and increased the number and branching of dopamine processes. In contrast to embryonically derived glia-free cultures, where l -DOPA is toxic, postnatal midbrain cultures did not show toxicity at 200 µ M l -DOPA. The stereoisomer d -DOPA (50–400 µ M ) was not neurotrophic. The aromatic amino acid decarboxylase inhibitor carbidopa (25 µ M ) did not block the neurotrophic effect. These data suggest that the neurotrophic effect of l -DOPA is stereospecific but independent of the production of dopamine. However, l -DOPA increased the level of glutathione. Inhibition of glutathione peroxidase by l -buthionine sulfoximine (3 µ M for 24 h) blocked the neurotrophic action of L-DOPA. N -Acetyl- l -cysteine (250 µ M for 48 h), which promotes glutathione synthesis, had a neurotrophic effect similar to that of l -DOPA. These data suggest that the neurotrophic effect of l -DOPA may be mediated, at least in part, by elevation of glutathione content.  相似文献   
13.
A close association between the HIV surface protein gp120 and the CD4 T cell receptor initiates the viral multiplication cycle. A 15 amino acid peptide (LAV) within the CD4 binding domain of gp 120 has been shown to retain receptor binding ability. The structural behavior of the LAV peptide has been studied by CD and NMR methods in aqueous solution and upon addition of trifluoroethanol (TFE) to emulate the relatively apolar conditions at the membrane bound receptor. Previous work has shown that the LAV peptide folds into a β-pleated structure in more polar buffer/TFE mixtures, while a concerted structural change can be observed at a concentration of 60% TFE (v/v). This abrupt, cooperative refolding from a regular β-sheet to a helical secondary structure is known as “switch” behavior. Former CD experiments with LAV sequence variants have supported the assumption that four amino acids at the N-terminus (LPCR) are indispensable for the “switch.” The tetrad has a strong β-turn forming potential. The suggestion has been formulated that the tetrad can act as a nucleation site governing the refolding. The present NMR study of the LAV peptide in TFE gives evidence for a 310-helix suggesting that the tetrad adopts a type III β-turn and promotes the formation of a similar bend in the next overlapping tetrad until the sequence is restructured into a 310-helix at a critical polarity favoring intrachain hydrogen bonds. © 1995 Wiley-Liss, Inc.  相似文献   
14.
Ten strains of filamentous, heterocystous nitrogen-fixing blue-green algae (cyanobacteria) were screened for growth performance and tolerance to temperature, pH, irradiance and salinity, together with their potential as producers of phycobiliprotein pigments. Phycobiliproteins typically accounted for about 50% total cell protein, the prevalent type being C-phycocyanin, followed by alloppycocyanin, with levels of 17 and 11% d.wt, respectively, in some strains of Anabaena and Nostoc. C-phycoerythrin was the major pigment in several Nostoc strains, reaching 10% d.wt. Some strains represent, therefore, excellent sources of one or more phycobiliproteins. All strains tolerated an irradiance of ca 2000 μmol photon m-2 s-1. Anabaena sp. ATCC 33047 and Nostoc sp. (Albufera) exhibited the widest optimum range of both temperature (30–45 and 25–40 °C) and pH (6.5–9.5 and 6.0–9.0) for growth, the former also showing significant salt tolerance. In an outdoor open system, productivity of cultures of two phycoerythrin-rich strains of Nostoc was over 20 g (d.wt) m-2 d-1 during summer. The growth performance of the allophycocyanin-rich Anabaena sp. ATCC 33047 in outdoor semi-continuous culture has been assessed throughout the year. Productivity values under optimized conditions ranged from 9 (winter) to 24 (summer) g (d.wt) m-2 d-1.  相似文献   
15.
Summary A new case of ring chromosome 4 in a 2-day-old female child with multiple malformations is described. By means of the GTG-banding technique, a karyotype 46,XX,r(4), (p16q35) was determined. The characteristics of the child's karyotype and the relationship with the structure of the chromosome, especially the location of the deletion that produces the syndrome, are compared with previous reports.  相似文献   
16.
The regulation of the final steps of the melanogenesis pathway, after L-2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome) formation, is studied. It is shown that both tyrosinase and dopachrome tautomerase are involved in the process. In vivo, it seems that tyrosinase is involved in the regulation of the amount of melanin formed, whereas dopachrome tautomerase is mainly involved in the size, structure and composition of melanin, by regulating to the incorporation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) into the polymer. Moreover, using L-3,4-dihydroxyphenylalanine (dopa) and related compounds, it was shown that the presence of dopachrome tautomerase mediates an initial acceleration of melanogenesis since L-dopachrome is rapidly transformed to DHICA, but that melanin formation is inhibited because of the stability of this carboxylated indole compared to 5,6-dihydroxyindole (DHI), its decarboxylated counterpart obtained by spontaneous decarboxylation of L-dopachrome. Using L-dopa methyl ester as a precursor of melanogenesis, it is shown that this carboxylated indole does not polymerize in the absence of DHI, even in the presence of tyrosinase. However, it is incorporated into the polymer in the presence of both tyrosinase and DHI. Thus, this study suggests that DHI is essential for melanin formation, and the rate of polymerization depends on the ratio between DHICA and DHI in the medium. In the melanosome, this ratio should be regulated by the ratio between the activities of dopachrome tautomerase and tyrosinase.  相似文献   
17.
The kinetic mechanisms of the reactions catalyzed by the two catalytic domains of aspartokinase-homoserine dehydrogenase I from Escherichia coli have been determined. Initial velocity, product inhibition, and dead-end inhibition studies of homoserine dehydrogenase are consistent with an ordered addition of NADPH and aspartate beta-semialdehyde followed by an ordered release of homoserine and NADP+. Aspartokinase I catalyzes the phosphorylation of a number of L-aspartic acid analogues and, moreover, can utilize MgdATP as a phosphoryl donor. Because of this broad substrate specificity, alternative substrate diagnostics was used to probe the kinetic mechanism of this enzyme. The kinetic patterns showed two sets of intersecting lines that are indicative of a random mechanism. Incorporation of these results with the data obtained from initial velocity, product inhibition, and dead-end inhibition studies at pH 8.0 are consistent with a random addition of L-aspartic acid and MgATP and an ordered release of MgADP and beta-aspartyl phosphate.  相似文献   
18.
Regulation of mammalian melanogenesis. II: The role of metal cations   总被引:2,自引:0,他引:2  
Melanogenesis can be divided into two phases. The first one involves two tyrosinase-catalyzed oxidations from tyrosine to dopaquinone and a very fast chemical step leading to dopachrome. The second phase, from dopachrome to melanin, can proceed spontaneously through several incompletely known reactions. However, some metal transition ions and protein factors different from tyrosinase might regulate the reaction rate and determine the structure and relative concentrations of the intermediates. The study of the effects of some divalent metal ions (Zn, Cu, Ni and Co) on some steps of the melanogenesis pathway has been approached using different radiolabeled substrates. Zn(II) inhibited tyrosine hydroxylation whereas Ni(II) and Co(II) were activators. Ni(II), Cu(II) and Co(II) accelerated chemical reactions from dopachrome but inhibited its decarboxylation. Dopachrome tautomerase also decreased decarboxylation. When metal ions and this enzyme act together, the inhibition of decarboxylation was greater than that produced by each agent separately, but amount of carboxylated units incorporated to the melanin was not higher than the amount incorporated in the presence of only cations. The amount of total melanin formed from tyrosine was increased by the presence of both agents. The action of Zn(II) was different from other ions also in the second phase of melanogenesis, and its effect on decarboxylation was less pronounced. Since tyrosine hydroxylation is the rate-limiting step in melanogenesis, Zn(II) inhibited the pathway. This ion seems to be the most abundant cation in mammalian melanocytes. Therefore, under physiological conditions, the regulatory role of metal ions and dopachrome tautomerase does not seem to be mutually exclusive, but rather complementary.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号