首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7705篇
  免费   543篇
  国内免费   2篇
  8250篇
  2023年   45篇
  2022年   79篇
  2021年   138篇
  2020年   81篇
  2019年   115篇
  2018年   140篇
  2017年   134篇
  2016年   233篇
  2015年   381篇
  2014年   434篇
  2013年   489篇
  2012年   720篇
  2011年   688篇
  2010年   437篇
  2009年   404篇
  2008年   565篇
  2007年   472篇
  2006年   452篇
  2005年   364篇
  2004年   388篇
  2003年   364篇
  2002年   342篇
  2001年   48篇
  2000年   40篇
  1999年   57篇
  1998年   73篇
  1997年   58篇
  1996年   56篇
  1995年   39篇
  1994年   34篇
  1993年   47篇
  1992年   26篇
  1991年   21篇
  1990年   14篇
  1989年   25篇
  1988年   14篇
  1987年   18篇
  1986年   19篇
  1985年   14篇
  1984年   18篇
  1983年   27篇
  1982年   15篇
  1981年   16篇
  1980年   13篇
  1978年   7篇
  1977年   11篇
  1976年   10篇
  1975年   6篇
  1974年   7篇
  1971年   5篇
排序方式: 共有8250条查询结果,搜索用时 15 毫秒
81.
In humans, two main metabolic enzymes synthesize hydrogen sulfide (H2S): cystathionine γ lyase (CSE) and cystathionine β synthase (CBS). A third enzyme, 3‐mercaptopyruvate sulfurtransferase (3‐MST), synthesizes H2S in the presence of the substrate 3‐mercaptopyruvate (3‐MP). The immunohistochemistry analysis performed on human melanoma samples demonstrated that CSE expression was highest in primary tumors, decreased in the metastatic lesions and was almost silent in non‐lymph node metastases. The primary role played by CSE was confirmed by the finding that the overexpression of CSE induced spontaneous apoptosis of human melanoma cells. The same effect was achieved using different H2S donors, the most active of which was diallyl trisulfide (DATS). The main pro‐apoptotic mechanisms involved were suppression of nuclear factor‐κB activity and inhibition of AKT and extracellular signal‐regulated kinase pathways. A proof of concept was obtained in vivo using a murine melanoma model. In fact, either l ‐cysteine, the CSE substrate, or DATS inhibited tumor growth in mice. In conclusion, we have determined that the l ‐cysteine/CSE/H2S pathway is involved in melanoma progression.  相似文献   
82.
Recently, a locus on chromosome 6q22.33 (rs2180341) was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ) population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC). In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR)?=?1.03, 95% CI 1.00-1.06, p?=?0.023). There was evidence for heterogeneity in the ORs among studies (I(2)?=?49.3%; p?=?<0.004). In CIMBA, we observed an inverse association with the minor allele of rs2180341 and breast cancer risk in BRCA1 mutation carriers (per-allele OR?=?0.89, 95%CI 0.80-1.00, p?=?0.048), indicating a potential protective effect of this allele. These data suggest that that 6q22.33 confers a weak effect on breast cancer risk.  相似文献   
83.
Different activation mechanisms of glycoprotein hormone receptors, which are members of the G protein-coupled receptor superfamily, have been proposed. For example, the large ectodomain of glycoprotein hormone receptors may function as an inverse agonist keeping the transmembrane domain in an inactive conformation. To provide support for this hypothesis, we have generated different lutropin/choriogonadotropin receptor (LHR) constructs lacking the ectodomain. Although some ectodomain-deficient LHR constructs were targeted to the cell surface, cAMP levels remained unchanged under basal conditions and agonist application but could be increased by a mutation within the transmembrane domain 6 (D578H). Taking advantage of a constitutive activating mutation (S277N) located in the extracellular domain, we showed that the intact leucine-rich repeat-containing ectodomain is essential for constitutive activation of the LHR by mutation of the hinge region. Our findings support an activation scenario in which agonist binding or mutational alterations expose a structure within the ectodomain, which then activates the transmembrane core.  相似文献   
84.
Leishmania parasites synthesize an abundance of mannose (Man)-containing glycoconjugates thought to be essential for virulence to the mammalian host and for viability. These glycoconjugates include lipophosphoglycan (LPG), proteophosphoglycans (PPGs), glycosylphosphatidylinositol (GPI)-anchored proteins, glycoinositolphospholipids (GIPLs), and N-glycans. A prerequisite for their biosynthesis is an ample supply of the Man donors GDP-Man and dolicholphosphate-Man. We have cloned from Leishmania mexicana the gene encoding the enzyme phosphomannomutase (PMM) and the previously described dolicholphosphate-Man synthase gene (DPMS) that are involved in Man activation. Surprisingly, gene deletion experiments resulted in viable parasite lines lacking the respective open reading frames (ΔPMM and ΔDPMS), a result against expectation and in contrast to the lethal phenotype observed in gene deletion experiments with fungi. L. mexicana ΔDPMS exhibits a selective defect in LPG, protein GPI anchor, and GIPL biosynthesis, but despite the absence of these structures, which have been implicated in parasite virulence and viability, the mutant remains infectious to macrophages and mice. By contrast, L. mexicana ΔPMM are largely devoid of all known Man-containing glycoconjugates and are unable to establish an infection in mouse macrophages or the living animal. Our results define Man activation leading to GDP-Man as a virulence pathway in Leishmania.  相似文献   
85.
The secreted form of mouse meprin A is a homooligomer of meprin alpha subunits that contain a prosequence, a catalytic domain, and three domains designated as MAM (meprin, A5 protein, receptor protein-tyrosine phosphatase mu), MATH (meprin and TRAF homology), and AM (AfterMath). Previous studies indicated that wild-type mouse meprin alpha is predominantly a secreted protein, while the MAM deletion mutant (DeltaMAM) is degraded intracellularly. The work herein indicates that the DeltaMAM mutant is ubiquitinated and degraded via the proteasomal pathway. Both wild-type meprin alpha and the DeltaMAM mutant interact with the molecular chaperones calnexin and calreticulin in the endoplasmic reticulum. The interactions of the chaperones with the DeltaMAM mutant were significantly prolonged in the presence of lactacystin, a specific inhibitor of the proteasome, whereas those with the wild type were not affected by this inhibitor. Trimming of the Asn-linked core oligosaccharides of meprin subunits was required for interactions with the chaperones. The data indicated that folding of the wild-type protein was accelerated by chaperones, whereas the rate of dimerization was unaffected. Thus, calnexin and calreticulin are intimately involved in the correct folding and transport of meprin to the plasma membrane, as well as in retrograde transport of the DeltaMAM mutant to the ubiquitin-dependent proteasomal degradative pathway in the cytosol.  相似文献   
86.
Alterations of the collagen, the major structural protein in skin, contribute significantly to human skin connective tissue aging. As aged-appearing skin is more common in diabetes, here we investigated the molecular basis of aged-appearing skin in diabetes. Among all known human matrix metalloproteinases (MMPs), diabetic skin shows elevated levels of MMP-1 and MMP-2. Laser capture microdissection (LCM) coupled real-time PCR indicated that elevated MMPs in diabetic skin were primarily expressed in the dermis. Furthermore, diabetic skin shows increased lysyl oxidase (LOX) expression and higher cross-linked collagens. Atomic force microscopy (AFM) further indicated that collagen fibrils were fragmented/disorganized, and key mechanical properties of traction force and tensile strength were increased in diabetic skin, compared to intact/well-organized collagen fibrils in non-diabetic skin. In in vitro tissue culture system, multiple MMPs including MMP-1 and MM-2 were induced by high glucose (25 mM) exposure to isolated primary human skin dermal fibroblasts, the major cells responsible for collagen homeostasis in skin. The elevation of MMPs and LOX over the years is thought to result in the accumulation of fragmented and cross-linked collagen, and thus impairs dermal collagen structural integrity and mechanical properties in diabetes. Our data partially explain why old-looking skin is more common in diabetic patients.  相似文献   
87.
The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.  相似文献   
88.
89.
Avoiding or intercepting looming objects implies a precise estimate of both time until contact and impact location. In natural situations, extrapolating a movement trajectory relative to some egocentric landmark requires taking into account variations in retinal input associated with moment-to-moment changes in body posture. Here, human observers predicted the impact location on their face of an approaching stimulus mounted on a robotic arm, while we systematically manipulated the relation between eye, head, and trunk orientation. The projected impact point on the observer's face was estimated most accurately when the target originated from a location aligned with both the head and eye axes. Eccentric targets with respect to either axis resulted in a systematic perceptual bias ipsilateral to the trajectory's origin. We conclude that (1) predicting the impact point of a looming target requires combining retinal information with eye position information, (2) that this computation is accomplished accurately for some, but not all, possible combinations of these cues, (3) that the representation of looming trajectories is not formed in a single, canonical reference frame, and (4) that the observed perceptual biases could reflect an automatic adaptation for interceptive/defensive actions within near peripersonal space.  相似文献   
90.
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13CO2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1–5), potentially corresponding to different enzymatic temperature‐dependent reaction mechanisms within β‐ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of β‐ocimenes (+4.4% °C?1) at the expense of other monoterpene isomers. The observed inverse temperature response of α‐pinene (?0.8% °C?1), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that β‐ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive β‐ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Thus, monoterpene composition may represent a new sensitive ‘thermometer’ of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere‐atmosphere carbon‐cycle feedbacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号