首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9880篇
  免费   679篇
  国内免费   3篇
  2023年   49篇
  2022年   102篇
  2021年   201篇
  2020年   136篇
  2019年   168篇
  2018年   206篇
  2017年   204篇
  2016年   324篇
  2015年   499篇
  2014年   568篇
  2013年   648篇
  2012年   903篇
  2011年   859篇
  2010年   541篇
  2009年   498篇
  2008年   695篇
  2007年   559篇
  2006年   556篇
  2005年   439篇
  2004年   467篇
  2003年   428篇
  2002年   419篇
  2001年   105篇
  2000年   78篇
  1999年   91篇
  1998年   91篇
  1997年   70篇
  1996年   66篇
  1995年   53篇
  1994年   45篇
  1993年   56篇
  1992年   42篇
  1991年   36篇
  1990年   24篇
  1989年   35篇
  1988年   20篇
  1987年   24篇
  1986年   23篇
  1985年   17篇
  1984年   23篇
  1983年   33篇
  1982年   22篇
  1981年   19篇
  1980年   13篇
  1978年   8篇
  1977年   12篇
  1976年   10篇
  1975年   7篇
  1974年   11篇
  1971年   5篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
901.
Newborns are colonized with an intestinal microbiota shortly after birth, but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut, where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when biassociated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion.  相似文献   
902.
As in mammals, insect health is strongly influenced by the composition and activities of resident microorganisms. However, the microbiota of insects is generally less diverse than that of mammals, allowing microbial function in insects to be coupled to individual, identified microbial species. This trait of insect symbioses facilitates our understanding of the mechanisms that promote insect-microbial coexistence and the processes by which the microbiota affect insect well-being. As a result, insects are potentially ideal models to study various aspects of interactions between the host and its resident microorganisms that would be impractical or unfeasible in mammals and to generate hypotheses for subsequent testing in mammalian models.  相似文献   
903.
We investigate the dynamics of the 2009 influenza A (H1N1/S-OIV) pandemic by analyzing data obtained from World Health Organization containing the total number of laboratory-confirmed cases of infections--by country--in a period of 69 days, from 26 April to 3 July, 2009. Specifically, we find evidence of exponential growth in the total number of confirmed cases and linear growth in the number of countries with confirmed cases. We also find that, i) at early stages, the cumulative distribution of cases among countries exhibits linear behavior on log-log scale, being well approximated by a power law decay; ii) for larger times, the cumulative distribution presents a systematic curvature on log-log scale, indicating a gradual change to lognormal behavior. Finally, we compare these empirical findings with the predictions of a simple stochastic model. Our results could help to select more realistic models of the dynamics of influenza-type pandemics.  相似文献   
904.

Background

The Zimbabwean national prevention of mother-to-child HIV transmission (PMTCT) program provided primarily single-dose nevirapine (sdNVP) from 2002–2009 and is currently replacing sdNVP with more effective antiretroviral (ARV) regimens.

Methods

Published HIV and PMTCT models, with local trial and programmatic data, were used to simulate a cohort of HIV-infected, pregnant/breastfeeding women in Zimbabwe (mean age 24.0 years, mean CD4 451 cells/µL). We compared five PMTCT regimens at a fixed level of PMTCT medication uptake: 1) no antenatal ARVs (comparator); 2) sdNVP; 3) WHO 2010 guidelines using “Option A” (zidovudine during pregnancy/infant NVP during breastfeeding for women without advanced HIV disease; lifelong 3-drug antiretroviral therapy (ART) for women with advanced disease); 4) WHO “Option B” (ART during pregnancy/breastfeeding without advanced disease; lifelong ART with advanced disease); and 5) “Option B+:” lifelong ART for all pregnant/breastfeeding, HIV-infected women. Pediatric (4–6 week and 18-month infection risk, 2-year survival) and maternal (2- and 5-year survival, life expectancy from delivery) outcomes were projected.

Results

Eighteen-month pediatric infection risks ranged from 25.8% (no antenatal ARVs) to 10.9% (Options B/B+). Although maternal short-term outcomes (2- and 5-year survival) varied only slightly by regimen, maternal life expectancy was reduced after receipt of sdNVP (13.8 years) or Option B (13.9 years) compared to no antenatal ARVs (14.0 years), Option A (14.0 years), or Option B+ (14.5 years).

Conclusions

Replacement of sdNVP with currently recommended regimens for PMTCT (WHO Options A, B, or B+) is necessary to reduce infant HIV infection risk in Zimbabwe. The planned transition to Option A may also improve both pediatric and maternal outcomes.  相似文献   
905.
Torque teno sus virus (TTSuV), a member of the family Anelloviridae, is a single-stranded, circular DNA virus, widely distributed in swine populations. Presently, two TTSuV genogroups are recognized: Torque teno sus virus 1 (TTSuV1) and Torque teno sus virus 2 (TTSuV2). TTSuV genomes have been found in commercial vaccines for swine, enzyme preparations and other drugs containing components of porcine origin. However, no studies have been made looking for TTSuV in cell cultures. In the present study, a search for TTSuV genomes was carried out in cell culture lineages, in sera used as supplement for cell culture media as well as in trypsin used for cell disaggregation. DNA obtained from twenty-five cell lineages (ten from cultures in routine multiplication and fifteen from frozen ampoules), nine samples of sera used in cell culture media and five batches of trypsin were examined for the presence of TTSuV DNA. Fifteen cell lineages, originated from thirteen different species contained amplifiable TTSuV genomes, including an ampoule with a cell lineage frozen in 1985. Three cell lineages of swine origin were co-infected with both TTSuV1 and TTSuV2. One batch of trypsin contained two distinct TTSuV1 plus one TTSuV2 genome, suggesting that this might have been the source of contamination, as supported by phylogenetic analyses of sequenced amplicons. Samples of fetal bovine and calf sera used in cell culture media did not contain amplifiable TTSuV DNA. This is the first report on the presence of TTSuV as contaminants in cell lineages. In addition, detection of the viral genome in an ampoule frozen in 1985 provides evidence that TTSuV contamination is not a recent event. These findings highlight the risks of TTSuV contamination in cell cultures, what may be source for contamination of biological products or compromise results of studies involving in vitro multiplied cells.  相似文献   
906.
907.
It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups.  相似文献   
908.
The requirement for large amounts of good quality DNA for whole-genome applications prohibits their use for small, laser capture micro-dissected (LCM), and/or rare clinical samples, which are also often formalin-fixed and paraffin-embedded (FFPE). Whole-genome amplification of DNA from these samples could, potentially, overcome these limitations. However, little is known about the artefacts introduced by amplification of FFPE-derived DNA with regard to genotyping, and subsequent copy number and loss of heterozygosity (LOH) analyses. Using a ligation adaptor amplification method, we present data from a total of 22 Affymetrix SNP 6.0 experiments, using matched paired amplified and non-amplified DNA from 10 LCM FFPE normal and dysplastic oral epithelial tissues, and an internal method control. An average of 76.5% of SNPs were called in both matched amplified and non-amplified DNA samples, and concordance was a promising 82.4%. Paired analysis for copy number, LOH, and both combined, showed that copy number changes were reduced in amplified DNA, but were 99.5% concordant when detected, amplifications were the changes most likely to be 'missed', only 30% of non-amplified LOH changes were identified in amplified pairs, and when copy number and LOH are combined ~50% of gene changes detected in the unamplified DNA were also detected in the amplified DNA and within these changes, 86.5% were concordant for both copy number and LOH status. However, there are also changes introduced as ~20% of changes in the amplified DNA are not detected in the non-amplified DNA. An integrative network biology approach revealed that changes in amplified DNA of dysplastic oral epithelium localize to topologically critical regions of the human protein-protein interaction network, suggesting their functional implication in the pathobiology of this disease. Taken together, our results support the use of amplification of FFPE-derived DNA, provided sufficient samples are used to increase power and compensate for increased error rates.  相似文献   
909.
The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca(2+) release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.  相似文献   
910.
G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号