首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7921篇
  免费   553篇
  国内免费   2篇
  2023年   36篇
  2022年   67篇
  2021年   140篇
  2020年   82篇
  2019年   121篇
  2018年   148篇
  2017年   144篇
  2016年   239篇
  2015年   389篇
  2014年   448篇
  2013年   496篇
  2012年   729篇
  2011年   700篇
  2010年   447篇
  2009年   413篇
  2008年   577篇
  2007年   475篇
  2006年   466篇
  2005年   373篇
  2004年   406篇
  2003年   372篇
  2002年   352篇
  2001年   54篇
  2000年   54篇
  1999年   60篇
  1998年   77篇
  1997年   59篇
  1996年   58篇
  1995年   39篇
  1994年   35篇
  1993年   49篇
  1992年   26篇
  1991年   22篇
  1990年   18篇
  1989年   25篇
  1988年   16篇
  1987年   19篇
  1986年   18篇
  1985年   16篇
  1984年   18篇
  1983年   30篇
  1982年   15篇
  1981年   20篇
  1980年   13篇
  1978年   9篇
  1977年   16篇
  1976年   12篇
  1975年   7篇
  1974年   11篇
  1972年   6篇
排序方式: 共有8476条查询结果,搜索用时 15 毫秒
181.
Islets form in the pancreas after the first endocrine cells have arisen as either single cells or small cell clusters in the epithelial cords. These cords constitute the developing pancreas in one of its earliest recognizable stages. Islet formation begins at the time the cords transform into a branching ductal system, continues while the ductal system expands, and finally stops before the exocrine tissue of ducts and acini reaches its final expansion. Thus, islets continuously arise from founder cells located in the branching and ramifying ducts. Islets arising from proximal duct cells locate between the exocrine lobules, develop strong autonomic and sensory innervations, and pass their blood to efferent veins (insulo-venous efferent system). Islets arising from cells of more distal ducts locate within the exocrine lobules, respond to nerve impulses ending at neighbouring blood vessels, and pass their blood to the surrounding acini (insulo-acinar portal system). Consequently, the section of the ductal system from which an islet arises determines to a large extent its future neighbouring tissue, architecture, properties, and functions. We note that islets interlobular in position are frequently found in rodents (rats and mice), whereas intralobularly-located, peripheral duct islets prevail in humans and cattle. Also, we expound on bovine foetal Laguesse islets as a prominent foetal type of type 1 interlobular neuro-insular complexes, similar to neuro-insular associations frequently found in rodents. Finally, we consider the probable physiological and pathophysiological implications of the different islet positions within and between species.  相似文献   
182.
183.
184.
The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants.  相似文献   
185.
The poly-γ-d-glutamic acid capsule of Bacillus anthracis is a barrier to infection by B. anthracis-specific bacteriophages. Capsule expression was found to completely inhibit lytic infection by γ phage, an observation supported by the demonstration that this phage does not elaborate a hydrolase that would facilitate penetration through the protective capsule outer layer.  相似文献   
186.
Chromosomal rearrangements may directly cause hybrid sterility and can facilitate speciation by preserving local adaptation in the face of gene flow. We used comparative linkage mapping with shared gene‐based markers to identify potential chromosomal rearrangements between the sister monkeyflowers Mimulus lewisii and Mimulus cardinalis, which are textbook examples of ecological speciation. We then remapped quantitative trait loci (QTLs) for floral traits and flowering time (premating isolation) and hybrid sterility (postzygotic isolation). We identified three major regions of recombination suppression in the M. lewisii × M. cardinalis hybrid map compared to a relatively collinear Mimulus parishii × M. lewisii map, consistent with a reciprocal translocation and two inversions specific to M. cardinalis. These inferences were supported by targeted intraspecific mapping, which also implied a M. lewisii‐specific reciprocal translocation causing chromosomal pseudo‐linkage in both hybrid mapping populations. Floral QTLs mapped in this study, along with previously mapped adaptive QTLs, were clustered in putatively rearranged regions. All QTLs for male sterility, including two underdominant loci, mapped to regions of recombination suppression. We argue that chromosomal rearrangements may have played an important role in generating and consolidating barriers to gene flow as natural selection drove the dramatic ecological and morphological divergence of these species.  相似文献   
187.
Increasing antibiotic resistance is making the identification of novel antimicrobial targets critical. Recently, we discovered an inhibitor of protein tyrosine phosphatase CpsB, fascioquinol E (FQE), which unexpectedly inhibited the growth of Gram-positive pathogens. CpsB is a member of the polymerase and histidinol phosphate phosphatase (PHP) domain family. Another member of this family found in a variety of Gram-positive pathogens is DNA polymerase PolC. We purified the PHP domain from PolC (PolCPHP), and showed that this competes away FQE inhibition of CpsB phosphatase activity. Furthermore, we showed that this domain hydrolyses the 5′-p-nitrophenyl ester of thymidine-5′-monophosphate (pNP-TMP), which has been used as a measure of exonuclease activity. Finally, we showed that FQE not only inhibits the phosphatase activity of CpsB, but also ability of PolCPHP to catalyse the hydrolysis of pNP-TMP. This suggests that PolC may be the essential target of FQE, and that the PHP domain may represent an as yet untapped target for the development of novel antibiotics.  相似文献   
188.
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR‐NB‐LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated r esistance to P lasmopara v iticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south‐eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1‐mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR‐NB‐LRR genes at this locus share a common ancestor.  相似文献   
189.
Like their animal counterparts, plant glutamate receptor‐like (GLR) homologs are intimately associated with Ca2+ influx through plasma membrane and participate in various physiological processes. In pathogen‐associated molecular patterns (PAMP)‐/elicitor‐mediated resistance, Ca2+ fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca2+] ([Ca2+]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense‐related genes by OGs. In addition, wild‐type Col‐0 plants treated with the glutamate‐receptor antagonist 6,7‐dinitriquinoxaline‐2,3‐dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against Harabidopsidis. In addition, some OGs‐triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen‐mediated plant defense signaling pathways in Arabidopsis thaliana.  相似文献   
190.
A structure–activity relationship (SAR) study of the c-Myc (Myc) inhibitor 10074-G5 (N-([1,1′-biphenyl]-2-yl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine, 1) – which targets a hydrophobic domain of the Myc oncoprotein that is flanked by arginine residues – was executed in order to determine its pharmacophore. Whilst the 7-nitrobenzofurazan was found to be critical for inhibitory activity, the ortho-biphenyl could be replaced with a para-carboxyphenyl group to furnish the new inhibitor JY-3-094 (3q). Around five times as potent as the lead with an IC50 of 33 μM for disruption of the Myc–Max heterodimer, JY-3-094 demonstrated excellent selectivity over Max–Max homodimers, with no apparent effect at 100 μM. Importantly, the carboxylic acid of JY-3-094 improves the physicochemical properties of the lead compound, which will facilitate the incorporation of additional hydrophobicity that might enhance Myc inhibitory activity further still.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号