首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7920篇
  免费   541篇
  国内免费   2篇
  2023年   47篇
  2022年   84篇
  2021年   140篇
  2020年   81篇
  2019年   118篇
  2018年   144篇
  2017年   140篇
  2016年   240篇
  2015年   396篇
  2014年   448篇
  2013年   497篇
  2012年   738篇
  2011年   706篇
  2010年   448篇
  2009年   412篇
  2008年   568篇
  2007年   481篇
  2006年   457篇
  2005年   367篇
  2004年   393篇
  2003年   371篇
  2002年   345篇
  2001年   50篇
  2000年   41篇
  1999年   58篇
  1998年   74篇
  1997年   56篇
  1996年   59篇
  1995年   39篇
  1994年   37篇
  1993年   46篇
  1992年   26篇
  1991年   25篇
  1990年   17篇
  1989年   26篇
  1988年   17篇
  1987年   20篇
  1986年   18篇
  1985年   14篇
  1984年   20篇
  1983年   28篇
  1982年   19篇
  1981年   18篇
  1980年   16篇
  1978年   11篇
  1977年   15篇
  1976年   12篇
  1975年   9篇
  1974年   8篇
  1972年   7篇
排序方式: 共有8463条查询结果,搜索用时 312 毫秒
111.
Thermophilic endospores are widespread in cold marine sediments where the temperature is too low to support growth and activity of thermophiles in situ. These endospores are likely expelled from warm subsurface environments and subsequently dispersed by ocean currents. The endospore upper temperature limit for survival is 140°C, which can be tolerated in repeated short exposures, potentially enabling transit through hot crustal fluids. Longer-term thermal tolerance of endospores, and how long they could persist in an environment hotter than their maximum growth temperature, is less understood. To test whether thermophilic endospores can survive prolonged exposure to high temperatures, sediments were incubated at 80–90°C for 6, 12 or 463 days. Sediments were then cooled by 10–40°C, mimicking the cooling in subsurface oil reservoirs subjected to seawater injection. Cooling the sediments induced sulfate reduction, coinciding with an enrichment of endospore-forming Clostridia. Different Desulfofundulus, Desulfohalotomaculum, Desulfallas, Desulfotomaculum and Desulfofarcimen demonstrated different thermal tolerances, with some Desulfofundulus strains surviving for >1 year at 80°C. In an oil reservoir context, heat-resistant endospore-forming sulfate-reducing bacteria have a survival advantage if they are introduced to, or are resident in, an oil reservoir normally too hot for germination and growth, explaining observations of reservoir souring following cold seawater injection.  相似文献   
112.
Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 μmol CH4 g−1 oil d−1, orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC–MS and FTICR–MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.  相似文献   
113.
Fire is a primary disturbance in boreal forests and generates both positive and negative climate forcings. The influence of fire on surface albedo is a predominantly negative forcing in boreal forests, and one of the strongest overall, due to increased snow exposure in the winter and spring months. Albedo forcings are spatially and temporally heterogeneous and depend on a variety of factors related to soils, topography, climate, land cover/vegetation type, successional dynamics, time since fire, season, and fire severity. However, how these variables interact to influence albedo is not well understood, and quantifying these relationships and predicting postfire albedo becomes increasingly important as the climate changes and management frameworks evolve to consider climate impacts. Here we developed a MODIS‐derived ‘blue sky’ albedo product and a novel machine learning modeling framework to predict fire‐driven changes in albedo under historical and future climate scenarios across boreal North America. Converted to radiative forcing (RF), we estimated that fires generate an annual mean cooling of ?1.77 ± 1.35 W/m2 from albedo under historical climate conditions (1971–2000) integrated over 70 years postfire. Increasing postfire albedo along a south–north climatic gradient was offset by a nearly opposite gradient in solar insolation, such that large‐scale spatial patterns in RF were minimal. Our models suggest that climate change will lead to decreases in mean annual postfire albedo, and hence a decreasing strength of the negative RF, a trend dominated by decreased snow cover in spring months. Considering the range of future climate scenarios and model uncertainties, we estimate that for fires burning in the current era (2016) the cooling effect from long‐term postfire albedo will be reduced by 15%–28% due to climate change.  相似文献   
114.
115.
116.
117.
Journal of Computational Neuroscience - Miniature yoked eye movements, fixational saccades, are critical to counteract visual fading. Fixational saccades are followed by a return saccades forming...  相似文献   
118.
The International Journal of Life Cycle Assessment - The current global interest in circular economy (CE) opens an opportunity to make society’s consumption and production patterns more...  相似文献   
119.
120.
Brazilian endemic batoid elasmobranch populations have declined dramatically in the past 40 years due to anthropic activities (e.g., overfishing). The Brazilian guitarfish, Pseudobatos horkelii, included in the IUCN red list of endangered species [Critically Endangered (CR)], has been captured as by-catch by trawling fishing boats to the edge of extinction. Despite governmental conservation initiatives, the species is still caught and commercialized along the Brazilian coast. In this study, the authors report three rare aggregation events for the Brazilian coast of P. horkelii, inside the only nearshore no-entry Brazilian marine protected area. Strategies for its protection are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号