首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19418篇
  免费   1486篇
  国内免费   381篇
  21285篇
  2023年   144篇
  2022年   271篇
  2021年   433篇
  2020年   318篇
  2019年   381篇
  2018年   456篇
  2017年   406篇
  2016年   592篇
  2015年   940篇
  2014年   1040篇
  2013年   1229篇
  2012年   1562篇
  2011年   1463篇
  2010年   928篇
  2009年   776篇
  2008年   1126篇
  2007年   1019篇
  2006年   959篇
  2005年   823篇
  2004年   811篇
  2003年   790篇
  2002年   703篇
  2001年   372篇
  2000年   366篇
  1999年   331篇
  1998年   186篇
  1997年   148篇
  1996年   129篇
  1995年   98篇
  1994年   119篇
  1993年   105篇
  1992年   189篇
  1991年   168篇
  1990年   145篇
  1989年   177篇
  1988年   138篇
  1987年   130篇
  1986年   124篇
  1985年   111篇
  1984年   83篇
  1983年   100篇
  1982年   62篇
  1981年   54篇
  1979年   59篇
  1977年   88篇
  1976年   57篇
  1975年   50篇
  1974年   64篇
  1973年   47篇
  1971年   47篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
We have recently reported that the administration of AM404, an inhibitor of the endocannabinoid re-uptake process, which also has affinity for the vanilloid VR1 receptors, is able to reduce hyperkinesia, and causes recovery from neurochemical deficits, in a rat model of Huntington's disease (HD) generated by bilateral intrastriatal injections of 3-nitropropionic acid (3NP). In the present study, we wanted to explore the mechanism(s) by which AM404 produces its antihyperkinetic effect in 3NP-lesioned rats by employing several experimental approaches. First, we tried to block the effects of AM404 with selective antagonists for the CB1 or VR1 receptors, i.e. SR141716A and capsazepine, respectively. We found that the reduction caused by AM404 of the increased ambulation exhibited by 3NP-lesioned rats in the open-field test was reversed when the animals had been pre-treated with capsazepine but not with SR141716A, thus suggesting a major role of VR1 receptors in the antihyperkinetic effects of AM404. However, despite the lack of behavioral effects of the CB1 receptor antagonist, the pretreatment with this compound abolished the recovery of neurochemical [gamma-aminobutyric acid (GABA) and dopamine] deficits in the caudate- putamen caused by AM404, as also did capsazepine. In a second group of studies, we wanted to explore the potential antihyperkinetic effects of various compounds which, compared to AM404, exhibit more selectivity for either the endovanilloid or the endocannabinoid systems. First, we tested VDM11 or AM374, two selective inhibitors or the endocannabinoid re-uptake or hydrolysis, respectively. Both compounds were mostly unable to reduce hyperkinesia in 3NP-lesioned rats, although VDM11 produced a certain motor depression, and AM374 exhibited a trend to stimulate ambulation, in control rats. We also tested the effects of selective direct agonists for VR1 (capsaicin) or CB1 (CP55,940) receptors. Capsaicin exhibited a strong antihyperkinetic activity and, moreover, was able to attenuate the reductions in dopamine and GABA transmission provoked by the 3NP lesion, whereas CP55,940 had also antihyperkinetic activity but was unable to cause recovery of either dopamine or GABA deficits in the basal ganglia. In summary, our data indicate a major role for VR1 receptors, as compared to CB1 receptors, in the antihyperkinetic effects and the recovery of neurochemical deficits caused in 3NP-lesioned rats by compounds that activate both CB1 and VR1 receptors, either directly or via manipulation of the levels of endogenous agonists.  相似文献   
992.
Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. The mature virus glycoproteins, Gn and Gc (previously referred to as G2 and G1), are generated by proteolytic cleavage from precursor proteins. The amino termini of Gn and Gc are immediately preceded by tetrapeptides RRLL and RKPL, respectively, leading to the hypothesis that SKI-1 or related proteases may be involved (A. J. Sanchez, M. J. Vincent, and S. T. Nichol, J. Virol. 76:7263-7275, 2002). In vitro peptide cleavage data show that an RRLL peptide representing the Gn processing site is efficiently cleaved by SKI-1 protease, whereas an RKPL peptide representing the Gc processing site is cleaved at negligible levels. The efficient cleavage of RRLL peptide is consistent with the known recognition sequences of SKI-1, including the sequence determinants involved in the cleavage of the Lassa virus (family Arenaviridae) glycoprotein precursor. These in vitro findings were confirmed by expression of wild-type or mutant CCHF virus glycoproteins in CHO cells engineered to express functional or nonfunctional SKI-1. Gn processing was found to be dependent on functional SKI-1, whereas Gc processing was not. Gn processing occurred in the endoplasmic reticulum-cis Golgi compartments and was dependent on an R at the -4 position within the RRLL recognition motif, consistent with the known cleavage properties of SKI-1. Comparison of SKI-1 cleavage efficiency between peptides representing Lassa virus GP2 and CCHF virus Gn cleavage sites suggests that amino acids flanking the RRLL may modulate the efficiency. The apparent lack of SKI-1 cleavage at the CCHF virus Gc RKPL site indicates that related proteases, other than SKI-1, are likely to be involved in the processing at this site and identical or similar sites utilized in several New World arenaviruses.  相似文献   
993.
Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR   总被引:18,自引:0,他引:18       下载免费PDF全文
DC-SIGN and DC-SIGNR are two closely related membrane-associated C-type lectins that bind human immunodeficiency virus (HIV) envelope glycoprotein with high affinity. Binding of HIV to cells expressing DC-SIGN or DC-SIGNR can enhance the efficiency of infection of cells coexpressing the specific HIV receptors. DC-SIGN is expressed on some dendritic cells, while DC-SIGNR is localized to certain endothelial cell populations, including hepatic sinusoidal endothelial cells. We found that soluble versions of the hepatitis C virus (HCV) E2 glycoprotein and retrovirus pseudotypes expressing chimeric forms of both HCV E1 and E2 glycoproteins bound efficiently to DC-SIGN and DC-SIGNR expressed on cell lines and primary human endothelial cells but not to other C-type lectins tested. Soluble E2 bound to immature and mature human monocyte-derived dendritic cells (MDDCs). Binding of E2 to immature MDDCs was dependent on DC-SIGN interactions, while binding to mature MDDCs was partly independent of DC-SIGN, suggesting that other cell surface molecules may mediate HCV glycoprotein interactions. HCV interactions with DC-SIGN and DC-SIGNR may contribute to the establishment or persistence of infection both by the capture and delivery of virus to the liver and by modulating dendritic cell function.  相似文献   
994.
Two distantly related classes of cylindrical chaperonin complexes assist in the folding of newly synthesized and stress-denatured proteins in an ATP-dependent manner. Group I chaperonins are thought to be restricted to the cytosol of bacteria and to mitochondria and chloroplasts, whereas the group II chaperonins are found in the archaeal and eukaryotic cytosol. Here we show that members of the archaeal genus Methanosarcina co-express both the complete group I (GroEL/GroES) and group II (thermosome/prefoldin) chaperonin systems in their cytosol. These mesophilic archaea have acquired between 20 and 35% of their genes by lateral gene transfer from bacteria. In Methanosarcina mazei G?1, both chaperonins are similarly abundant and are moderately induced under heat stress. The M. mazei GroEL/GroES proteins have the structural features of their bacterial counterparts. The thermosome contains three paralogous subunits, alpha, beta, and gamma, which assemble preferentially at a molar ratio of 2:1:1. As shown in vitro, the assembly reaction is dependent on ATP/Mg2+ or ADP/Mg2+ and the regulatory role of the beta subunit. The co-existence of both chaperonin systems in the same cellular compartment suggests the Methanosarcina species as useful model systems in studying the differential substrate specificity of the group I and II chaperonins and in elucidating how newly synthesized proteins are sorted from the ribosome to the proper chaperonin for folding.  相似文献   
995.
Escherichia coli polymerase 1 (Pol 1) and Thermus aquaticus Taq polymerase are homologous Type I DNA polymerases, each comprised of a polymerase domain, a proofreading domain (inactive in Taq), and a 5' nuclease domain. "Klenow" and "Klentaq" are the large fragments of Pol 1 and Taq and are functional polymerases lacking the 5' nuclease domain. In the available crystal structures of full-length Taq, the 5' nuclease domain is positioned in two different orientations: in one structure, it is extended out into solution, whereas in the other, it is folded up against the polymerase domain in a more compact structure. Analytical ultracentrifugation experiments report s20,w values of 5.05 for Taq, 4.1 for Klentaq, 5.3 for E. coli Pol 1, and 4.6 for Klenow. Measured partial specific volumes are all quite similar, indicating no significant differences in packing density between the mesophilic and thermophilic proteins. Small angle x-ray scattering studies report radii of gyration of 38.3 A for Taq, 30.7 A for Klentaq, and 30.5 A for Klenow. The hydrodynamic and x-ray scattering properties of the polymerases were also calculated directly from the different crystal structures using the programs HYDROPRO (Garcia De La Torre, J., Huertas, M. L., and Carrasco, B. (2000) Biophys J. 78, 719-730) and CRYSOL (Svergun, D. I., Barberato, C., and Koch, M. H. J. (1995) J. Appl. Crystalogr. 28, 768-773), respectively. The combined experimental and computational characterizations indicate that the full-length polymerases in solution are in a conformation where the 5' nuclease domain is extended into solution. Further, the radius of gyration, and hence the global conformation of Taq polymerase, is not altered by the binding of either matched primer template DNA or ddATP.  相似文献   
996.
The G protein beta gamma-dimer is required for receptor interaction and effector regulation. However, previous approaches have not identified the physiologic roles of individual subtypes in these processes. We used a gene knockout approach to demonstrate a unique role for the G protein gamma(7)-subunit in mice. Notably, deletion of Gng7 caused behavioral changes that were associated with reductions in the alpha(olf)-subunit content and adenylyl cyclase activity of the striatum. These data demonstrate that an individual gamma-subunit contributes to the specificity of a given signaling pathway and controls the formation or stability of a particular G protein heterotrimer.  相似文献   
997.
ATP-binding cassette (ABC) proteins constitute one of the widest families in all organisms, whose P-glycoprotein involved in resistance of cancer cells to chemotherapy is an archetype member. Although three-dimensional structures of several nucleotide-binding domains of ABC proteins are now available, the catalytic mechanism triggering the functioning of these proteins still remains elusive. In particular, it has been postulated that ATP hydrolysis proceeds via an acid-base mechanism catalyzed by the Glu residue adjacent to the Walker-B motif (Geourjon, C., Orelle, C., Steinfels, E., Blanchet, C., Deléage, G., Di Pietro, A., and Jault, J. M. (2001) Trends Biochem. Sci. 26, 539-544), but the involvement of such residue as the catalytic base in ABC transporters was recently questioned (Sauna, Z. E., Muller, M., Peng, X. H., and Ambudkar, S. V. (2002) Biochemistry, 41, 13989-14000). The equivalent glutamate residue (Glu504) of a half-ABC transporter involved in multidrug resistance in Bacillus subtilis, BmrA (formerly known as YvcC), was therefore mutated to Asp, Ala, Gln, Ser, and Cys residues. All these mutants were fully devoid of ATPase activity, yet they showed a high level of vanadate-independent trapping of 8-N3-alpha-32P-labeled nucleotide(s), following preincubation with 8-N3-[alpha-32P]ATP. However, and in contrast to the wild-type enzyme, the use of 8-N3-[gamma-32P]ATP unequivocally showed that all the mutants trapped exclusively the triphosphate form of the analogue, suggesting that they were not able to perform even a single hydrolytic turnover. These results demonstrate that Glu504 is the catalytic base for ATP hydrolysis in BmrA, and it is proposed that equivalent glutamate residues in other ABC transporters play the same role.  相似文献   
998.
999.
Modulation of the cytoskeletal architecture was shown to regulate the expression of CTGF (connective tissue growth factor, CCN2). The microtubule disrupting agents nocodazole and colchicine strongly up-regulated CTGF expression, which was prevented upon stabilization of the microtubules by paclitaxel. As a consequence of microtubule disruption, RhoA was activated and the actin stress fibers were stabilized. Both effects were related to CTGF induction. Overexpression of constitutively active RhoA induced CTGF synthesis. Interference with RhoA signaling by simvastatin, toxinB, C3 toxin, and Y27632 prevented up-regulation of CTGF. Likewise, direct disintegration of the actin cytoskeleton by latrunculin B interfered with nocodazole-mediated up-regulation of CTGF expression. Disassembly of actin fibers by cytochalasin D, however, unexpectedly increased CTGF expression indicating that the content of F-actin per se was not the major determinant for CTGF gene expression. Given the fact that cytochalasin D sequesters G-actin, a decrease in G-actin increased CTGF, while increased levels of G-actin corresponded to reduced CTGF expression. These data link alterations in the microtubule and actin cytoskeleton to the expression of CTGF and provide a molecular basis for the observation that CTGF is up-regulated in cells exposed to mechanical stress.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号