全文获取类型
收费全文 | 7723篇 |
免费 | 542篇 |
国内免费 | 2篇 |
专业分类
8267篇 |
出版年
2023年 | 45篇 |
2022年 | 79篇 |
2021年 | 137篇 |
2020年 | 80篇 |
2019年 | 114篇 |
2018年 | 140篇 |
2017年 | 138篇 |
2016年 | 233篇 |
2015年 | 382篇 |
2014年 | 435篇 |
2013年 | 488篇 |
2012年 | 719篇 |
2011年 | 690篇 |
2010年 | 440篇 |
2009年 | 404篇 |
2008年 | 566篇 |
2007年 | 469篇 |
2006年 | 453篇 |
2005年 | 365篇 |
2004年 | 390篇 |
2003年 | 366篇 |
2002年 | 342篇 |
2001年 | 48篇 |
2000年 | 43篇 |
1999年 | 56篇 |
1998年 | 75篇 |
1997年 | 55篇 |
1996年 | 56篇 |
1995年 | 39篇 |
1994年 | 34篇 |
1993年 | 46篇 |
1992年 | 26篇 |
1991年 | 22篇 |
1990年 | 14篇 |
1989年 | 25篇 |
1988年 | 15篇 |
1987年 | 18篇 |
1986年 | 18篇 |
1985年 | 13篇 |
1984年 | 17篇 |
1983年 | 27篇 |
1982年 | 16篇 |
1981年 | 16篇 |
1980年 | 12篇 |
1978年 | 7篇 |
1977年 | 14篇 |
1976年 | 11篇 |
1975年 | 6篇 |
1974年 | 7篇 |
1971年 | 5篇 |
排序方式: 共有8267条查询结果,搜索用时 15 毫秒
41.
42.
43.
Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host. 相似文献
44.
Campo GM Avenoso A Campo S D'Ascola A Ferlazzo AM Calatroni A 《Chemico-biological interactions》2004,148(3):125-138
Hepatic fibrosis involves the interplay of many factors including reactive oxygen species. Recent reports described antioxidant properties of glycosaminoglycans (GAGs). Since several findings have shown that hyaluronic acid (HYA) and chondroitin-4-sulphate (C4S) may act as antioxidant molecules, the aim of this research was to evaluate the antioxidant effects of HYA and C4S treatment in a rat model of liver fibrosis. The effect on tissue inhibitors of metalloproteinases (TIMPs) was also studied. Liver fibrosis was induced in rats by eight intraperitoneal injections of CCl4, twice a week for 6 weeks. HYA or C4S alone (25 mg/kg) or HYA and C4S in combination (12.5 + 12.5 mg/kg) were administered daily by the same route during the 6 weeks. At the end of the 6-week treatment period (24 h after the last dose of GAGs), the following parameters were evaluated: (1) serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, as index of hepatic cell disruption; (2) hepatic conjugated dienes (CD), as index of lipid peroxidation; (3) hepatic TIMPs activity and expression; (4) hepatic superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, as index of endogenous defences; (5) hepatic hydroxyproline, as index of collagen deposition. CCl4-induced liver fibrosis enhanced lipid peroxidation and TIMPs activation, increased ALT and AST, depleted antioxidants SOD and GPx, and caused collagen deposition in liver tissue. Treatment with GAGs, especially when in combination, successfully reduced ALT and AST rise, lipid peroxidation by evaluating conjugated dienes, TIMPs activation and mRNA expression, partially restored SOD and GPx activities, and limited collagen deposition in the hepatic tissue. The data obtained showed that these molecules were able to limit hepatic injury induced by chronic CCl4 intoxication and especially limited liver fibrosis. They also confirm that HYA and C4S may exert antioxidant mechanism, while reduction of TIMPs expression suggests that GAGs may influence MMPs and TIMPs imbalance in liver fibrosis. 相似文献
45.
De Franceschi L Scardoni G Tomelleri C Danek A Walker RH Jung HH Bader B Mazzucco S Dotti MT Siciliano A Pantaleo A Laudanna C 《PloS one》2012,7(2):e31015
Acanthocytes, abnormal thorny red blood cells (RBC), are one of the biological hallmarks of neuroacanthocytosis syndromes (NA), a group of rare hereditary neurodegenerative disorders. Since RBCs are easily accessible, the study of acanthocytes in NA may provide insights into potential mechanisms of neurodegeneration. Previous studies have shown that changes in RBC membrane protein phosphorylation state affect RBC membrane mechanical stability and morphology. Here, we coupled tyrosine-phosphoproteomic analysis to topological network analysis. We aimed to predict signaling sub-networks possibly involved in the generation of acanthocytes in patients affected by the two core NA disorders, namely McLeod syndrome (MLS, XK-related, Xk protein) and chorea-acanthocytosis (ChAc, VPS13A-related, chorein protein). The experimentally determined phosphoproteomic data-sets allowed us to relate the subsequent network analysis to the pathogenetic background. To reduce the network complexity, we combined several algorithms of topological network analysis including cluster determination by shortest path analysis, protein categorization based on centrality indexes, along with annotation-based node filtering. We first identified XK- and VPS13A-related protein-protein interaction networks by identifying all the interactomic shortest paths linking Xk and chorein to the corresponding set of proteins whose tyrosine phosphorylation was altered in patients. These networks include the most likely paths of functional influence of Xk and chorein on phosphorylated proteins. We further refined the analysis by extracting restricted sets of highly interacting signaling proteins representing a common molecular background bridging the generation of acanthocytes in MLS and ChAc. The final analysis pointed to a novel, very restricted, signaling module of 14 highly interconnected kinases, whose alteration is possibly involved in generation of acanthocytes in MLS and ChAc. 相似文献
46.
47.
Abdul Ghafoor Khan Angela Pickl-Herk Leszek Gajdzik Thomas C. Marlovits Renate Fuchs Dieter Blaas 《Journal of virology》2010,84(8):3984-3992
Intercellular adhesion molecule 1 (ICAM-1) mediates binding and entry of major group human rhinoviruses (HRVs). Whereas the entry pathway of minor group HRVs has been studied in detail and is comparatively well understood, the pathway taken by major group HRVs is largely unknown. Use of immunofluorescence microscopy, colocalization with specific endocytic markers, dominant negative mutants, and pharmacological inhibitors allowed us to demonstrate that the major group virus HRV14 enters rhabdomyosarcoma cells transfected to express human ICAM-1 in a clathrin-, caveolin-, and flotillin-independent manner. Electron microscopy revealed that many virions accumulated in long tubular structures, easily distinguishable from clathrin-coated pits and caveolae. Virus entry was strongly sensitive to the Na+/H+ ion exchange inhibitor amiloride and moderately sensitive to cytochalasin D. Thus, cellular uptake of HRV14 occurs via a pathway exhibiting some, but not all, characteristics of macropinocytosis and is similar to that recently described for adenovirus 3 entry via αv integrin/CD46 in HeLa cells.Human rhinoviruses (HRVs), members of the family Picornaviridae that represent a major cause of the common cold, essentially utilize two different receptor types for host cell attachment. The 12 minor group HRVs, exemplified by HRV2, bind low-density lipoprotein receptor (LDLR), LDLR-related protein (LRP) (20), and very-LDLR (VLDLR) (29) and are internalized via the well-characterized clathrin-dependent endocytic pathway (44); however, these ligands, like others, can switch to different entry portals when the clathrin-dependent pathway is blocked (4). Once the virus arrives in endosomal carrier vesicles or late endosomes, uncoating (i.e., the release of the viral RNA genome) is triggered by the acidic pH (35, 39).The 87 major group HRVs, exemplified by HRV14, bind intercellular adhesion molecule-1 (ICAM-1). Following entry, uncoating is triggered by ICAM-1 itself (3), but the low endosomal pH facilitates this process (37). Based on inhibition of infection by the dominant negative (DN) dynamin-2 mutant dynK44A, it was proposed that HRV14 also follows a clathrin-dependent pathway in HeLa-H1 cells (9). However, ICAM-1 lacks a clathrin localization signal and even functions as a viral receptor when its cytoplasmic tail is replaced with a glycosylphosphatidylinositol (GPI) anchor (45). Furthermore, dynamin has also been shown to be involved in pathways other than clathrin-mediated endocytosis (CME), such as caveolae- and lipid raft-dependent entry, as a function of ligand and cell type (reviewed in references 30 and 34). Additionally, dynamin might play a role in formation and closure of circular pinocytic ruffles (31). More recently, a specific entry pathway for ICAM-1 ligands into human umbilical vein endothelial cells was identified and termed “cam-mediated endocytosis”; uptake was found to be triggered upon binding of multivalent ligands, such as immunoconjugates and immunobeads, and to occur independently from clathrin and caveolin. Inhibition by amiloride, actin depolymerization, and protein kinase C inhibitors pointed to macropinocytosis (33). So far, it is not known whether these findings are relevant to the entry pathway of HRVs via ICAM-1 as the uptake kinetics was significantly dependent on particle size. For all these reasons, involvement of clathrin in HRV14 uptake is questionable. Accordingly, we explored entry of HRV14 via ICAM-1 and compared the results with the well-characterized clathrin-dependent entry pathway of HRV2 (44). Employing pharmacological compounds, specific DN inhibitors, immunofluorescence, and electron microscopy, we demonstrate that HRV14 enters rhabdomyosarcoma ICAM-1-expressing (RD-ICAM) cells via a pathway independent of clathrin, caveolin, and flotillin. 相似文献
48.
The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence 总被引:1,自引:0,他引:1 下载免费PDF全文
Kortum RL Johnson HJ Costanzo DL Volle DJ Razidlo GL Fusello AM Shaw AS Lewis RE 《Molecular and cellular biology》2006,26(6):2202-2214
In primary mouse embryo fibroblasts (MEFs), oncogenic Ras induces growth arrest via Raf/MEK/extracellular signal-regulated kinase (ERK)-mediated activation of the p19ARF/p53 and INK4/Rb tumor suppressor pathways. Ablation of these same pathways causes spontaneous immortalization in MEFs, and oncogenic transformation by Ras requires ablation of one or both of these pathways. We show that Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK cascade, is necessary for RasV12-induced senescence, and its disruption enhances primary MEF immortalization. RasV12 failed to induce p53, p19ARF, p16INK4a, and p15INK4b expression in KSR1-/- MEFs and increased proliferation instead of causing growth arrest. Reintroduction of wild-type KSR1, but not a mutated KSR1 construct unable to bind activated ERK, rescued RasV12-induced senescence. On continuous culture, deletion of KSR1 accelerated the establishment of spontaneously immortalized cultures and increased the proportion of cultures escaping replicative crisis. Despite enhancing escape from both RasV12-induced and replicative senescence, however, both primary and immortalized KSR1-/- MEFs are completely resistant to RasV12-induced transformation. These data show that escape from senescence is not necessarily a precursor for oncogenic transformation. Furthermore, these data indicate that KSR1 is a member of a unique class of proteins whose deletion blocks both senescence and transformation. 相似文献
49.
Bruna Gigante Rona J. Strawbridge Ilais Moreno Velasquez Zahra Golabkesh Angela Silveira Anuj Goel Damiano Baldassarre Fabrizio Veglia Elena Tremoli Robert Clarke Hugh Watkins Anders Hamsten Steve E. Humphries Ulf de Faire 《PloS one》2015,10(3)
Variants at the interleukin 6 receptor (IL6R) gene regulate inflammation and are associated with risk of coronary heart disease (CHD). The aim of the present study was to investigate the effects of IL6R haplotypes on circulating levels of inflammatory biomarkers and risk of CHD. We performed a discovery analysis in SHEEP, a myocardial infarction (MI) case control study (n = 2,774) and replicated our results in two large, independent European populations, PROCARDIS, a CHD case control study (n = 7,998), and IMPROVE (n = 3,711) a prospective cardiovascular cohort study. Two major haplotype blocks (rs12083537A/G and rs4075015A/T—block 1; and rs8192282G/A, rs4553185T/C, rs8192284A/C, rs4240872T/C and rs7514452T/C—block 2) were identified in the IL6R gene. IL6R haplotype associations with C-reactive protein (CRP), fibrinogen, IL6, soluble IL6R (sIL6R), IL6, IL8 and TNF-α in SHEEP, CRP and fibrinogen in PROCARDIS and CRP in IMPROVE as well as association with risk of MI and CHD, were analyzed by THESIAS. Haplotypes in block 1 were associated neither with circulating inflammatory biomarkers nor with the MI/CHD risk. Haplotypes in block 2 were associated with circulating levels of CRP, in all three study populations, with fibrinogen in SHEEP and PROCARDIS, with IL8 and sIL6Rin SHEEP and with a modest, non significant, increase (7%) in MI/CHD risk in the three populations studied. Our results indicate that IL6R haplotypes regulate the circulating levels of inflammatory biomarkers. Lack of association with the risk of CHD may be explained by the combined effect of SNPs with opposite effect on the CHD risk, the sample size as well as by structural changes affecting sIL6R stability in the circulation. 相似文献
50.
Maria Angela M. Q. Carreira André B. Nogueira Felipe M. Pena Marcio G. Kiuchi Ronaldo C. Rodrigues Rodrigo R. Rodrigues Jorge P. S. Matos Jocemir R. Lugon 《PloS one》2015,10(6)
Autonomic dysfunction is highly prevalent in hemodialysis patients and has been implicated in their increased risk of cardiovascular mortality.