首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   61篇
  626篇
  2023年   4篇
  2022年   3篇
  2021年   11篇
  2020年   6篇
  2019年   3篇
  2018年   8篇
  2017年   4篇
  2016年   14篇
  2015年   21篇
  2014年   25篇
  2013年   25篇
  2012年   40篇
  2011年   29篇
  2010年   34篇
  2009年   22篇
  2008年   38篇
  2007年   23篇
  2006年   35篇
  2005年   21篇
  2004年   25篇
  2003年   26篇
  2002年   21篇
  2001年   19篇
  2000年   15篇
  1999年   15篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   12篇
  1991年   9篇
  1990年   7篇
  1986年   9篇
  1984年   5篇
  1983年   4篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1976年   4篇
  1973年   4篇
  1972年   2篇
  1970年   5篇
  1969年   3篇
  1967年   2篇
  1962年   2篇
  1959年   4篇
  1954年   2篇
  1953年   2篇
排序方式: 共有626条查询结果,搜索用时 0 毫秒
501.
502.
Vinculin is an essential and highly conserved cell adhesion protein, found at both focal adhesions and adherens junctions, where it couples integrins or cadherins to the actin cytoskeleton. Vinculin is involved in controlling cell shape, motility, and cell survival, and has more recently been shown to play a role in force transduction. The tail domain of vinculin (Vt) contains determinants necessary for binding and bundling of actin filaments. Actin binding to Vt has been proposed to induce formation of a Vt dimer that is necessary for cross-linking actin filaments. Results from this study provide additional support for actin-induced Vt self-association. Moreover, the actin-induced Vt dimer appears distinct from the dimer formed in the absence of actin. To better characterize the role of the Vt strap and carboxyl terminus (CT) in actin binding, Vt self-association, and actin bundling, we employed smaller amino-terminal (NT) and CT deletions that do not perturb the structural integrity of Vt. Although both NT and CT deletions retain actin binding, removal of the CT hairpin (1061-1066) selectively impairs actin bundling in vitro. Moreover, expression of vinculin lacking the CT hairpin in vinculin knock-out murine embryonic fibroblasts affects the number of focal adhesions formed, cell spreading as well as cellular stiffening in response to mechanical force.  相似文献   
503.
Hibiscus latent Singapore virus (HLSV) is a rigid rod-shaped plant virus and a new member of the Tobamovirus family. Unlike all other Tobamoviruses, the HLSV genome contains a unique poly(A) tract in its 3′ untranslated region. The virion is composed of a monomeric coat protein (CP) unit of 18 kDa, arranged as a right-handed helix around the virus axis. We have determined the structure of HLSV at 3.5 Å by X-ray fiber diffraction and refined it to an R-factor of 0.096. While the overall structure of the HLSV CP resembles that of other Tobamoviruses, there are a few unique differences. There is a kink in the LR helix due to the presence of His122. Also, the adjacent Lys123 may further destabilize the helix by positive charge repulsion, making the kink more pronounced. The His122-Asp88 salt bridge provides significant stability to the loop adjacent to the RR helix. Carboxyl-carboxylate interactions that drive viral disassembly are also different in HLSV. The nucleotide recognition mechanisms for virus assembly between HLSV and ribgrass mosaic virus are similar, but different between tobacco mosaic virus and cucumber green mottle mosaic virus.  相似文献   
504.
Linker histone H1 plays an essential role in chromatin organization. Proper deposition of linker histone H1 as well as its removal is essential for chromatin dynamics and function. Linker histone chaperones perform this important task during chromatin assembly and other DNA-templated phenomena in the cell. Our in vitro data show that the multifunctional histone chaperone NPM1 interacts with linker histone H1 through its first acidic stretch (residues 120-132). Association of NPM1 with linker histone H1 was also observed in cells in culture. NPM1 exhibited remarkable linker histone H1 chaperone activity, as it was able to efficiently deposit histone H1 onto dinucleosomal templates. Overexpression of NPM1 reduced the histone H1 occupancy on the chromatinized template of HIV-1 LTR in TZM-bl cells, which led to enhanced Tat-mediated transactivation. These data identify NPM1 as an important member of the linker histone chaperone family in humans.  相似文献   
505.
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias.  相似文献   
506.
The Saccharomyces cerevisiae PHO5 gene product accounts for a majority of the acid phosphatase activity. Its expression is induced by the basic helix-loop-helix (bHLH) protein, Pho4p, in response to phosphate depletion. Pho4p binds predominantly to two UAS elements (UASp1 at -356 and UASp2 at -247) in the PHO5 promoter. Previous studies from our lab have shown cross-regulation of different biological processes by bHLH proteins. This study tested the ability of all yeast bHLH proteins to regulate PHO5 expression and identified inositol-mediated regulation via the Ino2p/Ino4p bHLH proteins. Ino2p/Ino4p are known regulators of phospholipid biosynthetic genes. Genetic epistasis experiments showed that regulation by inositol required a third UAS site (UASp3 at -194). ChIP assays showed that Ino2p:Ino4p bind the PHO5 promoter and that this binding is dependent on Pho4p binding. These results demonstrate that phospholipid biosynthesis is co-ordinated with phosphate utilization via the bHLH proteins.  相似文献   
507.
Jagannathan L  Swaminathan K  Kumar SM  Kumar GR  Dey A 《Gene》2012,494(1):130-139
Alcohol induced liver injury has been studied extensively. Using literature search and bioinformatics tools, the present study characterizes the genes involved in alcohol induced liver injury. The cellular and metabolic processes in which genes involved in alcohol induced liver injury are implicated are also discussed. The genes related to alcohol induced liver injury are also involved in affecting certain molecular functions and metabolism of drugs, besides being associated with diseases. In conclusion, the changes in regulation of genes implicated in alcohol induced liver injury apart from causing alcohol mediated hepatic dysfunction may affect other vital processes in the body.  相似文献   
508.
Cyclophilin38 (CYP38) is one of the highly divergent cyclophilins from Arabidopsis thaliana. Here, we report the crystal structure of the At-CYP38 protein (residues 83 to 437 of 437 amino acids) at 2.39-Å resolution. The structure reveals two distinct domains: an N-terminal helical bundle and a C-terminal cyclophilin β-barrel, connected by an acidic loop. Two N-terminal β-strands become part of the C-terminal cyclophilin β-barrel, thereby making a previously undiscovered domain organization. This study shows that CYP38 does not possess peptidyl-prolyl cis/trans isomerase activity and identifies a possible interaction of CYP38 with the E-loop of chlorophyll protein47 (CP47), a component of photosystem II. The interaction of CYP38 with the E-loop of CP47 is mediated through its cyclophilin domain. The N-terminal helical domain is closely packed together with the putative C-terminal cyclophilin domain and establishes a strong intramolecular interaction, thereby preventing the access of the cyclophilin domain to other proteins. This was further verified by protein–protein interaction assays using the yeast two-hybrid system. Furthermore, the non-Leucine zipper N-terminal helical bundle contains several new elements for protein–protein interaction that may be of functional significance. Together, this study provides the structure of a plant cyclophilin and explains a possible mechanism for autoinhibition of its function through an intramolecular interaction.  相似文献   
509.
510.
ObjectivesElimination of brain tumour initiating cells (BTICs) is important for the good prognosis of malignant brain tumour treatment. To develop a novel strategy targeting BTICs, we studied NR2E1(TLX) involved self‐renewal mechanism of BTICs and explored the intervention means.Materials and MethodsNR2E1 and its interacting protein‐LSD1 in BTICs were studied by gene interference combined with cell growth, tumour sphere formation, co‐immunoprecipitation and chromatin immunoprecipitation assays. NR2E1 interacting peptide of LSD1 was identified by Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX‐MS) and analysed by in vitro functional assays. The in vivo function of the peptide was examined with intracranial mouse model by transplanting patient‐derived BTICs.ResultsWe found NR2E1 recruits LSD1, a lysine demethylase, to demethylate mono‐ and di‐methylated histone 3 Lys4 (H3K4me/me2) at the Pten promoter and repress its expression, thereby promoting BTIC proliferation. Using Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX‐MS) method, we identified four LSD1 peptides that may interact with NR2E1. One of the peptides, LSD1‐197‐211 that locates at the LSD1 SWIRM domain, strongly inhibited BTIC proliferation by promoting Pten expression through interfering NR2E1 and LSD1 function. Furthermore, overexpression of this peptide in human BTICs can inhibit intracranial tumour formation.ConclusionPeptide LSD1‐197‐211 can repress BTICs by interfering the synergistic function of NR2E1 and LSD1 and may be a promising lead peptide for brain tumour therapy in future.

  • NR2E1 and LSD1 complex directly represses Pten in BTICs by demethylating H3K4me and H3K4me2 at its promoter, and thus promotes the proliferation of BTICs.
  • LSD1‐197‐211 peptide interferes the interaction between NR2E1 and LSD1 and restores Pten expression, which in turn inhibits the proliferation of BTICs.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号