首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1429篇
  免费   126篇
  国内免费   33篇
  1588篇
  2023年   13篇
  2022年   30篇
  2021年   39篇
  2020年   30篇
  2019年   46篇
  2018年   70篇
  2017年   41篇
  2016年   66篇
  2015年   93篇
  2014年   86篇
  2013年   105篇
  2012年   145篇
  2011年   149篇
  2010年   75篇
  2009年   57篇
  2008年   83篇
  2007年   82篇
  2006年   70篇
  2005年   41篇
  2004年   55篇
  2003年   35篇
  2002年   38篇
  2001年   20篇
  2000年   17篇
  1999年   19篇
  1998年   5篇
  1997年   3篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
Mapping protein–protein interactions is essential to fully characterize the biological function of a protein and improve our understanding of diseases. Affinity purification coupled to mass spectrometry (AP-MS) using selective antibodies against a target protein has been commonly applied to study protein complexes. However, one major limitation is a lack of specificity as a substantial part of the proposed binders is due to nonspecific interactions. Here, we describe an innovative immuno-competitive capture mass spectrometry (ICC-MS) method to allow systematic investigation of protein–protein interactions. ICC-MS markedly increases the specificity of classical immunoprecipitation (IP) by introducing a competition step between free and capturing antibody prior to IP. Instead of comparing only one experimental sample with a control, the methodology generates a 12-concentration antibody competition profile. Label-free quantitation followed by a robust statistical analysis of the data is then used to extract the cellular interactome of a protein of interest and to filter out background proteins. We applied this new approach to specifically map the interactome of hepatitis C virus (HCV) nonstructural protein 5A (NS5A) in a cellular HCV replication system and uncovered eight new NS5A-interacting protein candidates along with two previously validated binding partners. Follow-up biological validation experiments revealed that large tumor suppressor homolog 1 and 2 (LATS1 and LATS2, respectively), two closely related human protein kinases, are novel host kinases responsible for NS5A phosphorylation at a highly conserved position required for optimal HCV genome replication. These results are the first illustration of the value of ICC-MS for the analysis of endogenous protein complexes to identify biologically relevant protein–protein interactions with high specificity.The exploration of a protein''s interactome in a given biological system is often critical to understand its function. Since the introduction of yeast two-hybrid experiments, alternative methods to explore protein–protein interactions have emerged (13). In particular, the combination of affinity-purification with mass spectrometry (AP-MS)1 (4) has shown great promise for the identification of protein complexes directly in mammalian cell lines (5). This approach typically involves capturing the protein of interest either through an epitope tag or using a selective antibody. The main challenge with AP-MS is to discern bona fide interactors from highly abundant cellular proteins e.g. cytoskeletal or ribosomal proteins that bind nonspecifically to the affinity matrix (6). This can be partially addressed by including a negative control, such as IP with an antibody of the same isotype against an irrelevant protein or using samples where the target protein is absent (4). More recently, the introduction of quantitative MS (79), involving either isotope labeling or label-free strategies (for a review see (9, 10)), have led to a better distinction between true and false-positive interactions. While most of the recent efforts to reduce false positive rates have concentrated on refining data analysis (11), very few attempts have been made to improve the selectivity at the IP step (12). Consequently, classical quantitative side-by-side comparison of a sample with its control (wild type versus knockout cell lysates or capturing antibody versus control isotype) still suffers from the fact that the control sample is not identical to the probed one and both samples can lead to the association of different nonspecific binders.In this study, we present an innovative approach, termed immuno-competitive capture MS (ICC-MS), which involves a competition step between free and bound antibody in the same cellular extract and quantitation using label-free MS. Instead of comparing only one IP with a control, the methodology generates a 12-concentration antibody competition profile. Combined with a robust statistical analysis of the quantified MS signals, the cellular endogenous interactome of a protein of interest can be extracted out of the background of hundreds of proteins. We used this new approach to specifically map the interactome of the HCV NS5A protein, an essential viral regulatory protein for both genome replication and modulation of the host environment (13). Proteins interacting with NS5A have been previously identified using yeast two-hybrid (14) or classical co-expression and co-immunoprecipitation methods (15). In this study, we use a human hepatocyte-derived cellular model of HCV genome replication and uncover eight new NS5A-interacting protein candidates in addition to other well-known partners. In particular, we highlight LATS1 and LATS2, two closely related human serine/threonine protein kinases, and demonstrate that they are new host kinases responsible for NS5A phosphorylation and optimal HCV replication.  相似文献   
75.
The cornea is a transparent, avascular, and highly specialized connective tissue that provides the majority of light refraction in the optical system of the eye. The human cornea is composed of several layers interacting in a complex manner and possessing specific functions, like eye protection and optical clearness. Only few proteomic studies of mammalian cornea have been performed leading to the identification of less than 200 proteins in human corneas. The present study explores the proteome of the intact normal human cornea using a shot-gun nanoLC-MS/MS strategy and an LTQ Orbitrap mass spectrometer. A total of 2070 distinct corneal proteins were identified from five human cornea samples, which represents a 14-fold improvement in the number of proteins identified so far for human cornea. This enlarged dataset of human corneal proteins represents a valuable reference library for further studies on cornea homeostasis and pathophysiology. Network and gene ontology analyses were used to determine biological pathways specific of the human cornea. They allowed the identification of subnetworks of putative importance for corneal diseases, like a redox regulation and oxidative stress network constituted of aldehyde and alcohol dehydrogenases, most of them being described for the first time in human cornea.  相似文献   
76.
DNA integrity is under the control of multiple pathways of nucleotide metabolism and DNA damage recognition and repair. Unusual sets of protein factors involved in these control mechanisms may result in tolerance and accumulation of non-canonical bases within the DNA. We investigate the presence of uracil in genomic DNA of Drosophila melanogaster. Results indicate a developmental pattern and strong correlations between uracil-DNA levels, dUTPase expression and developmental fate of different tissues. The intriguing lack of the catalytically most efficient uracil-DNA glycosylase in Drosophila melanogaster may be a general attribute of Holometabola and is suggested to be involved in the specific characteristics of uracil-DNA metabolism in these insects.  相似文献   
77.
Periplasmic or membrane-bound bacterial hydrogenases are generally composed of a small subunit and a large subunit. The small subunit contains a peculiar N-terminal twin-arginine signal peptide, whereas the large subunit lacks any known targeting signal for export. Genetic and biochemistry data support the assumption that the large subunit is cotranslocated with the small subunit across the cytoplasmic membrane. Indeed, the signal peptide carried by the small subunit directs both the small and the large subunits to the recently identified Mtt/Tat pathway, independently of the Sec machinery. In addition, the twin-arginine signal peptide of hydrogenase is capable of directing protein import into the thylakoidal lumen of chloroplasts via the homologous deltapH-driven pathway, which is independent of the Sec machinery. Therefore, the translocation of hydrogenase shares characteristics with the deltapH-driven import pathway in terms of Sec-independence and requirement for the twin-arginine signal peptide, and with protein import into peroxisomes in a "piggyback" fashion.  相似文献   
78.
SPG13, an autosomal dominant form of pure hereditary spastic paraplegia, was recently mapped to chromosome 2q24-34 in a French family. Here we present genetic data indicating that SPG13 is associated with a mutation, in the gene encoding the human mitochondrial chaperonin Hsp60, that results in the V72I substitution. A complementation assay showed that wild-type HSP60 (also known as "HSPD1"), but not HSP60 (V72I), together with the co-chaperonin HSP10 (also known as "HSPE1"), can support growth of Escherichia coli cells in which the homologous chromosomal groESgroEL chaperonin genes have been deleted. Taken together, our data strongly indicate that the V72I variation is the first disease-causing mutation that has been identified in HSP60.  相似文献   
79.
Cadherins are the most crucial membrane proteins for the formation of tight and compact cell-cell contacts. Cadherin-based cell-cell adhesions are dynamically established and/or disrupted during various physiological and pathological processes. However, the molecular mechanisms that regulate cell-cell contacts are not fully understood. In this paper, we report a novel functional role of casein kinase 1 (CK1) in the regulation of cell-cell contacts. Firstly, we observed that IC261, a specific inhibitor of CK1, stabilizes cadherin-based cell-cell contacts, whereas the overexpression of CK1 disrupts them. CK1 colocalizes with E-cadherin and phosphorylates the cytoplasmic domain of E-cadherin in vitro and in a cell culture system. We show that the major CK1 phosphorylation site of E-cadherin is serine 846, a highly conserved residue between classical cadherins. Constitutively phosphorylated E-cadherin (S846D) is unable to localize at cell-cell contacts and has decreased adhesive activity. Furthermore, phosphorylated E-cadherin (S846D) has weaker interactions with beta-catenin and is internalized more efficiently than wild-type E-cadherin. These data indicate that CK1 is a novel negative regulator of cadherin-based cell-cell contacts.  相似文献   
80.
Hydrogen sulfide is an inflammatory mediator and is produced by the activity of the enzyme cystathionine γ-lyase (CSE) in macrophages. Previously, pharmacological inhibition of CSE has been reported to have conflicting results, and this may be due to the lack of specificity of the pharmacological agents. Therefore, this study used a very specific approach of small interfering RNA (siRNA) to inhibit the production of the CSE in an in vitro setting. We found that the activation of macrophages by lipopolysaccharide (LPS) resulted in higher levels of CSE mRNA and protein as well as the increased production of proinflammatory cytokines and nitric oxide (NO). We successfully used siRNA to specifically reduce the levels of CSE mRNA and protein in activated macrophages. Furthermore, the levels of proinflammatory cytokines in LPS-activated macrophages were significantly lower in siRNA-transfected cells compared to those in untransfected controls. However, the production levels of NO by the transfected cells were higher, suggesting that CSE activity has an inhibitory effect on NO production. These findings suggest that the CSE enzyme has a crucial role in the activation of macrophages, and its activity has an inhibitory effect on NO production by these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号