全文获取类型
收费全文 | 603篇 |
免费 | 44篇 |
专业分类
647篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 5篇 |
2020年 | 3篇 |
2019年 | 5篇 |
2018年 | 7篇 |
2017年 | 7篇 |
2016年 | 23篇 |
2015年 | 31篇 |
2014年 | 31篇 |
2013年 | 29篇 |
2012年 | 41篇 |
2011年 | 56篇 |
2010年 | 40篇 |
2009年 | 22篇 |
2008年 | 35篇 |
2007年 | 40篇 |
2006年 | 41篇 |
2005年 | 31篇 |
2004年 | 34篇 |
2003年 | 20篇 |
2002年 | 33篇 |
2001年 | 9篇 |
2000年 | 7篇 |
1999年 | 5篇 |
1998年 | 10篇 |
1997年 | 8篇 |
1996年 | 9篇 |
1995年 | 15篇 |
1994年 | 6篇 |
1993年 | 11篇 |
1992年 | 7篇 |
1991年 | 10篇 |
1988年 | 1篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有647条查询结果,搜索用时 18 毫秒
621.
Julia Heymann Anette Rejman Lipinski Bianca Bauer Thomas F. Meyer Dagmar Heuer 《Cellular microbiology》2013,15(7):1059-1069
Chlamydiae are obligate intracellular bacterial pathogens that cause trachoma, sexually transmitted diseases and respiratory infections in humans. Fragmentation of the host cell Golgi apparatus (GA) is essential for chlamydial development, whereas the consequences for host cell functions, including cell migration are not well understood. We could show that Chlamydia trachomatis‐infected cells display decelerated migration and fail to repopulate monolayer scratch wounds. Furthermore, infected cells lost the ability to reorient the fragmented GA or the microtubule organization centre (MTOC) after a migratory stimulus. Silencing of golgin‐84 phenocopied this defect in the absence of the infection. Interestingly, GA stabilization via knockdown of Rab6A and Rab11A improved its reorientation in infected cells and it was fully rescued after inhibition of Golgi fragmentation with WEHD‐fmk. These results show that C. trachomatis infection perturbs host cell migration on multiple levels, including the alignment of GA and MTOC. 相似文献
622.
Johannes Fredebohm Michael Boettcher Christian Eisen Matthias M. Gaida Anette Heller Shereen Keleg J?rg Tost Karin M. Greulich-Bode Agnes Hotz-Wagenblatt Mark Lathrop Nathalia A. Giese J?rg D. Hoheisel 《PloS one》2012,7(11)
Standard cancer cell lines do not model the intratumoural heterogeneity situation sufficiently. Clonal selection leads to a homogeneous population of cells by genetic drift. Heterogeneity of tumour cells, however, is particularly critical for therapeutically relevant studies, since it is a prerequisite for acquiring drug resistance and reoccurrence of tumours. Here, we report the isolation of a highly tumourigenic primary pancreatic cancer cell line, called JoPaca-1 and its detailed characterization at multiple levels. Implantation of as few as 100 JoPaca-1 cells into immunodeficient mice gave rise to tumours that were histologically very similar to the primary tumour. The high heterogeneity of JoPaca-1 was reflected by diverse cell morphology and a substantial number of chromosomal aberrations. Comparative whole-genome sequencing of JoPaca-1 and BxPC-3 revealed mutations in genes frequently altered in pancreatic cancer. Exceptionally high expression of cancer stem cell markers and a high clonogenic potential in vitro and in vivo was observed. All of these attributes make this cell line an extremely valuable model to study the biology of and pharmaceutical effects on pancreatic cancer. 相似文献
623.
Low Endocytic pH and Capsid Protein Autocleavage Are Critical Components of Flock House Virus Cell Entry 下载免费PDF全文
Amy L. Odegard Maggie H. Kwan Hanna E. Walukiewicz Manidipa Banerjee Anette Schneemann John E. Johnson 《Journal of virology》2009,83(17):8628-8637
The process by which nonenveloped viruses cross cell membranes during host cell entry remains poorly defined; however, common themes are emerging. Here, we use correlated in vivo and in vitro studies to understand the mechanism of Flock House virus (FHV) entry and membrane penetration. We demonstrate that low endocytic pH is required for FHV infection, that exposure to acidic pH promotes FHV-mediated disruption of model membranes (liposomes), and particles exposed to low pH in vitro exhibit increased hydrophobicity. In addition, FHV particles perturbed by heating displayed a marked increase in liposome disruption, indicating that membrane-active regions of the capsid are exposed or released under these conditions. We also provide evidence that autoproteolytic cleavage, to generate the lipophilic γ peptide (4.4 kDa), is required for membrane penetration. Mutant, cleavage-defective particles failed to mediate liposome lysis, regardless of pH or heat treatment, suggesting that these particles are not able to expose or release the requisite membrane-active regions of the capsid, namely, the γ peptides. Based on these results, we propose an updated model for FHV entry in which (i) the virus enters the host cell by endocytosis, (ii) low pH within the endocytic pathway triggers the irreversible exposure or release of γ peptides from the virus particle, and (iii) the exposed/released γ peptides disrupt the endosomal membrane, facilitating translocation of viral RNA into the cytoplasm.Flock House virus (FHV), a nonenveloped, positive-sense RNA virus, has been employed as a model system in several important studies to address a wide range of biological questions (reviewed in reference 55). FHV has been instrumental in understanding virus structure and assembly (17, 19, 45), RNA replication (2, 3, 37), and specific packaging of the genome (33, 44, 53, 54). Studies of FHV infection in Drosophila melanogaster flies have provided valuable information about the antiviral innate immune response in invertebrate hosts (29, 57). FHV is also used in nanotechnology applications as an epitope-presenting platform to develop novel vaccines and medical therapies (31, 48). In this report, we use FHV as a model system to further elucidate the means by which nonenveloped viruses enter host cells and traverse cellular membranes.During cell entry enveloped and nonenveloped viral capsid proteins undergo structural rearrangements that enable the virus to breach the membrane bilayer, ultimately releasing the viral genome or nucleocapsid into the cytoplasm. These entry-related conformational changes have been well characterized for enveloped viruses, which use membrane fusion to cross membrane bilayers (reviewed in reference 59). However, the mechanisms nonenveloped viruses employ to breach cellular membranes are poorly defined. Recently, significant parallels in the mechanisms of cell entry have emerged for a diverse group of nonenveloped viruses. Specifically, programmed capsid disassembly and release of small membrane-interacting peptides appear to be a common theme (reviewed in references 4 and 50).The site of membrane penetration depends upon the route of virus entry into the cell. Viruses can enter host cells via several distinct pathways, including clathrin-mediated endocytosis, caveolae-mediated endocytosis, lipid raft-mediated endocytosis, and macropinocytosis (reviewed in reference 40). The two primary routes of virus entry are clathrin-mediated endocytosis, where viruses encounter an acidic environment, and caveolae-mediated endocytosis, which is pH neutral. Many nonenveloped viruses, including adenovirus (24, 52), parvovirus (6), and reovirus (34, 49), require acidic pH during entry. However, numerous nonenveloped viruses have acid-independent entry mechanisms, including rotavirus (28), polyomavirus (43), simian virus 40 (41, 51), and several members of the picornavirus family (7, 14, 32, 42).Upon reaching the appropriate site of membrane penetration, nonenveloped virus capsid proteins are triggered by cellular factors, such as receptor binding and/or exposure to low pH within endosomes, to undergo conformational changes necessary for membrane interactions. These tightly regulated structural rearrangements may include capsid disassembly, exposure of hydrophobic regions, and/or release of membrane-lytic factors. For example, low pH within endosomes triggers adenovirus capsid disassembly, leading to the release of the membrane lytic protein VI (24, 60). In contrast, poliovirus is activated for membrane penetration by a pH-independent mechanism. Receptor binding triggers the poliovirus capsid to undergo a conformational change, resulting in the exposure of the N terminus of VP1 and the release of VP4 (18, 23), both of which facilitate membrane interactions (20). Notably, even though some viruses, such as reovirus, enter cells via an acidic endocytic pathway, membrane penetration is not acid activated (16), indicating that exposure to low pH and membrane penetration are not always mutual events.The overall simplicity of the FHV capsid, composed of a single gene product, along with the wealth of available high-resolution structural information (reviewed in reference 45) make FHV an ideal candidate for understanding nonenveloped virus entry and infection. FHV, a member of the family Nodaviridae, is a nonenveloped insect virus with a bipartite RNA genome surrounded by an icosahedral protein capsid. The quasi-equivalent T=3 virion (∼300-Å diameter) is initially composed of 180 copies of a single coat precursor protein α (44 kDa). Following capsid assembly the α protein undergoes autocatalytic cleavage to generate two particle-associated cleavage products, a large N-terminal fragment, β (39 kDa), and a small C-terminal fragment, γ (4.4 kDa) (22), creating the infectious virion (46). Mutant FHV particles that do not undergo autocatalytic cleavage, and therefore cannot release the γ peptide, are not infectious (46). It has been hypothesized that these particles are noninfectious because they cannot mediate membrane penetration, but this has never been shown directly.The FHV X-ray structure revealed that the γ peptides were located inside the capsid shell with residues 364 to 385 forming amphipathic helices (19). Subsequent studies showed that the FHV capsid is dynamic, with γ transiently exposed to the exterior of the capsid (11). These findings led to a structure-based model of FHV membrane disruption in which the dynamic γ peptides are reversibly exposed to the surface of the capsid (11), “sampling” the environment until they encounter the appropriate cellular trigger. The virus is then activated to undergo an irreversible conformational change in which the γ helical bundles located at each fivefold axis are externalized and released from the virus particle (17, 19). Upon release, the γ pentameric helical bundles are predicted to insert into and create a local disruption of the membrane bilayer to allow the RNA to enter the cytoplasm (10).While biochemical and structural studies have provided the foundation for a model of FHV cell entry, more rigorous in vivo and in vitro studies are necessary to confirm the ideas put forth in this model. Here, we clarify the route of FHV entry and characterize the tightly regulated events required for FHV membrane penetration. We demonstrate for the first time that low endocytic pH is required for FHV infection, that acidic pH promotes FHV membrane penetration, and that particles exposed to low pH exhibit increased hydrophobicity. In addition, we provide evidence that mutant, cleavage-defective particles are blocked specifically at the membrane penetration step during cell entry. Taken together, these findings offer an experimentally supported model of FHV entry into host cells. In addition, these results add to the accumulating evidence that nonenveloped viruses employ common mechanisms to traverse cellular membranes. 相似文献
624.
Cindy Harper Anette Ludwig Amy Clarke Kagiso Makgopela Andrey Yurchenko Alan Guthrie Pavel Dobrynin Gaik Tamazian Richard Emslie Marile van Heerden Markus Hofmeyr Roderick Potter Johannes Roets Piet Beytell Moses Otiende Linus Kariuki Raoul du Toit Natasha Anderson Stephen J. O’Brien 《Current biology : CB》2018,28(1):R13-R14
625.
Katrine Saldern Aagaard Anette Drøhse Kjeldsen Pernille Mathiesen Tørring Anders Green 《Orphanet journal of rare diseases》2018,13(1):223
Background
Hereditary Haemorrhagic Telangiectasia (HHT) is an autosomal dominant genetic disorder with a wide variety of clinical manifestations due to the presence of multiple arteriovenous malformations in various tissues and organs.Objective
To study the need for hospital admittance in a group of HHT patients and matched controls during a 20?years follow-up period commencing in 1995.Methods
All HHT patients in the County of Funen, Denmark, were included. For each patient, three age and sex matched controls were identified at the time of enrolment. Data on all hospitalisations were extracted from the national health registers and compared with clinical records. The hospitalisations were grouped as HHT relevant or not HHT relevant based on the discharge diagnosis (International Classification of Diseases, ICD10) and with particular focus on infections, bleedings and thromboembolic events.Patients with HHT were compared with controls concerning the first time incidence of each discharge diagnosis.Results
We included 73 HHT patients and 219 controls of which one control was lost to follow-up. HHT-patients had significantly more hospitalisations per person caused by infections in joints and bones, but not caused by infections in general. Bleeding episodes were, as expected, more frequent among the HHT-patients. The study revealed a similar incidence of abscesses and thromboembolisms, including in the central nervous system, among the HHT patients and controls.Conclusions
Based on this study Danish HHT patients had an increased comorbidity of infections in joints and bones and of bleeding episodes. However, the incidence of thromboembolisms, cerebral abscesses and other conditions commonly considered related to HHT was comparable between the patients and the controls. The patients included in this study were closely monitored at a highly specialised HHT Centre where they received relevant diagnostic evaluation, treatment and counselling. Since this is assumed to benefit the overall health of the patients, it may explain why these patients were less prone to comorbidity than other studies have suggested.626.
Carla Patrícia Bejo Wolkers Augusto Barbosa Junior Leda Menescal-de-Oliveira Anette Hoffmann 《PloS one》2013,8(7)
Pain perception in non-mammalian vertebrates such as fish is a controversial issue. We demonstrate that, in the fish Leporinus macrocephalus, an imposed restraint can modulate the behavioral response to a noxious stimulus, specifically the subcutaneous injection of 3% formaldehyde. In the first experiment, formaldehyde was applied immediately after 3 or 5 min of the restraint. Inhibition of the increase in locomotor activity in response to formaldehyde was observed, which suggests a possible restraint-induced antinociception. In the second experiment, the noxious stimulus was applied 0, 5, 10 and 15 min after the restraint, and both 3 and 5 min of restraint promoted short-term antinociception of approximately 5 min. In experiments 3 and 4, an intraperitoneal injection of naloxone (30 mg.kg−1) was administered 30 min prior to the restraint. The 3- minute restraint-induced antinociception was blocked by pretreatment with naloxone, but the corresponding 5-minute response was not. One possible explanation for this result is that an opioid and a non-preferential μ–opioid and/or non-opioid mechanism participate in this response modulation. Furthermore, we observed that both the 3- and 5- minutes restraint were severely stressful events for the organism, promoting marked increases in serum cortisol levels. These data indicate that the response to a noxious stimulus can be modulated by an environmental stressor in fish, as is the case in mammals. To our knowledge, this study is the first evidence for the existence of an endogenous antinociceptive system that is activated by an acute standardized stress in fish. Additionally, it characterizes the antinociceptive response induced by stress in terms of its time course and the opioid mediation, providing information for understanding the evolution of nociception modulation. 相似文献
627.
628.
Mitogenomic analyses of caniform relationships 总被引:5,自引:0,他引:5
Extant members of the order Carnivora split into two basal groups, Caniformia (dog-like carnivorans) and Feliformia (cat-like carnivorans). In this study we address phylogenetic relationships within Caniformia applying various methodological approaches to analyses of complete mitochondrial genomes. Pinnipeds are currently well represented with respect to mitogenomic data and here we add seven mt genomes to the non-pinniped caniform collection. The analyses identified a basal caniform divergence between Cynoidea and Arctoidea. Arctoidea split into three primary groups, Ursidae (including the giant panda), Pinnipedia, and a branch, Musteloidea, which encompassed Ailuridae (red panda), Mephitidae (skunks), Procyonidae (raccoons) and Mustelidae (mustelids). The analyses favored a basal arctoid split between Ursidae and a branch containing Pinnipedia and Musteloidea. Within the Musteloidea there was a preference for a basal divergence between Ailuridae and remaining families. Among the latter, the analyses identified a sister group relationship between Mephitidae and a branch that contained Procyonidae and Mustelidae. The mitogenomic distance between the wolf and the dog was shown to be at the same level as that of basal human divergences. The wolf and the dog are commonly considered as separate species in the popular literature. The mitogenomic result is inconsistent with that understanding at the same time as it provides insight into the time of the domestication of the dog relative to basal human mitogenomic divergences. 相似文献
629.
Anke Doyon Dagmar-Christiane Fischer Aysun Karabay Bayazit Nur Canpolat Ali Duzova Betül S?zeri Justine Bacchetta Ayse Balat Anja Büscher Cengiz Candan Nilgun Cakar Osman Donmez Jiri Dusek Martina Heckel Günter Klaus Sevgi Mir Gül ?zcelik Lale Sever Rukshana Shroff Enrico Vidal Elke Wühl Matthias Gondan Anette Melk Uwe Querfeld Dieter Haffner Franz Schaefer for the C Study Consortium 《PloS one》2015,10(2)
ObjectivesThe extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort.MethodsBone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6–18 years with an estimated glomerular filtration rate (eGFR) of 10–60 ml/min/1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group.ResultsStandardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score.ConclusionMarkers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity. 相似文献
630.
McLeod A Nyquist OL Snipen L Naterstad K Axelsson L 《Systematic and applied microbiology》2008,31(5):393-403
The diversity of 10 strains of Lactobacillus sakei, a commercially important species of lactobacilli, was characterized by studying food isolates. Growth characteristics varied among the strains when examined after growth in a complex medium and a defined medium with either glucose or ribose. A commercial starter culture strain showed the fastest growth rates and high biomass formation on all media, while two of the strains hardly grew on ribose. Based on acidification properties in a meat model, some of the strains had the ability to compete with the indigenous microbiota of the meat batter in addition to being fast acid producers. Carbohydrate-fermentation abilities revealed a relatively wide variation, clustering the strains into two phenotypic groups. The isolates were analyzed using different genetic fingerprinting techniques, demonstrating a distinction between two genetic groups, a grouping consistent with previous studies dealing with L. sakei strains. Comparative genome hybridization (CGH) was introduced for clustering the strains and the same division into two genetic groups was observed. Chromosomal sizes of the strains were estimated by pulsed field gel electrophoresis (PFGE) and were found to vary from 1884 to 2175 kb. The genetic groups did not correlate with the clustering obtained with carbohydrate-fermenting abilities or with chromosomal sizes. 相似文献