首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   43篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   7篇
  2016年   23篇
  2015年   32篇
  2014年   31篇
  2013年   29篇
  2012年   43篇
  2011年   56篇
  2010年   40篇
  2009年   22篇
  2008年   35篇
  2007年   42篇
  2006年   41篇
  2005年   31篇
  2004年   34篇
  2003年   21篇
  2002年   33篇
  2001年   9篇
  2000年   7篇
  1999年   5篇
  1998年   10篇
  1997年   8篇
  1996年   10篇
  1995年   15篇
  1994年   6篇
  1993年   11篇
  1992年   7篇
  1991年   10篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   2篇
  1966年   1篇
  1960年   1篇
排序方式: 共有659条查询结果,搜索用时 15 毫秒
81.
Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B) has been suggested to play an important role in the generation of cancer-specific methylation patterns. Previous studies have shown that a reduction of DNMT3B protein levels induces antiproliferative effects in cancer cells that were attributed to the demethylation and reactivation of tumor suppressor genes. However, methylation changes have not been analyzed in detail yet. Using RNA interference we reduced DNMT3B protein levels in colon cancer cell lines. Our results confirm that depletion of DNMT3B specifically reduced the proliferation rate of DNMT3B-overexpressing colon cancer cell lines. However, genome-scale DNA methylation profiling failed to reveal methylation changes at putative DNMT3B target genes, even in the complete absence of DNMT3B. These results show that DNMT3B is dispensable for the maintenance of aberrant DNA methylation patterns in human colon cancer cells and they have important implications for the development of targeted DNA methyltransferase inhibitors as epigenetic cancer drugs.  相似文献   
82.
There is evidence that women are better in recognizing their own and others' emotions. The female advantage in emotion recognition becomes even more apparent under conditions of rapid stimulus presentation. Affective priming paradigms have been developed to examine empirically whether facial emotion stimuli presented outside of conscious awareness color our impressions. It was observed that masked emotional facial expression has an affect congruent influence on subsequent judgments of neutral stimuli. The aim of the present study was to examine the effect of gender on affective priming based on negative and positive facial expression. In our priming experiment sad, happy, neutral, or no facial expression was briefly presented (for 33 ms) and masked by neutral faces which had to be evaluated. 81 young healthy volunteers (53 women) participated in the study. Subjects had no subjective awareness of emotional primes. Women did not differ from men with regard to age, education, intelligence, trait anxiety, or depressivity. In the whole sample, happy but not sad facial expression elicited valence congruent affective priming. Between-group analyses revealed that women manifested greater affective priming due to happy faces than men. Women seem to have a greater ability to perceive and respond to positive facial emotion at an automatic processing level compared to men. High perceptual sensitivity to minimal social-affective signals may contribute to women's advantage in understanding other persons' emotional states.  相似文献   
83.
Fungal hyphae and plant pollen tubes are among the most highly polarized cells known and pose extraordinary requirements on their cell polarity machinery. Cellular morphogenesis is driven through the phospholipid-dependent organization at the apical plasma membrane. We characterized the contribution of phosphoinositides (PIs) in hyphal growth of the filamentous ascomycete Neurospora crassa. MSS-4 is an essential gene and its deletion resulted in spherically growing cells that ultimately lyse. Two conditional mss-4-mutants exhibited altered hyphal morphology and aberrant branching at restrictive conditions that were complemented by expression of wild type MSS-4. Recombinant MSS-4 was characterized as a phosphatidylinositolmonophosphate-kinase phosphorylating phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). PtdIns3P was also used as a substrate. Sequencing of two conditional mss-4 alleles identified a single substitution of a highly conserved Y750 to N. The biochemical characterization of recombinant protein variants revealed Y750 as critical for PI4P 5-kinase activity of MSS-4 and of plant PI4P 5-kinases. The conditional growth defects of mss-4 mutants were caused by severely reduced activity of MSS-4(Y750N), enabling the formation of only trace amounts of PtdIns(4,5)P2. In N. crassa hyphae, PtdIns(4,5)P2 localized predominantly in the plasma membrane of hyphae and along septa. Fluorescence-tagged MSS-4 formed a subapical collar at hyphal tips, localized to constricting septa and accumulated at contact points of fusing N. crassa germlings, indicating MSS-4 is responsible for the formation of relevant pools of PtdIns(4,5)P2 that control polar and directional growth and septation. N. crassa MSS-4 differs from yeast, plant and mammalian PI4P 5-kinases by containing additional protein domains. The N-terminal domain of N. crassa MSS-4 was required for correct membrane association. The data presented for N. crassa MSS-4 and its roles in hyphal growth are discussed with a comparative perspective on PI-control of polar tip growth in different organismic kingdoms.  相似文献   
84.

Background

Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL''s are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTL''s. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers.

Methodology/Principal Findings

We have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC). Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps.

Conclusions/Significance

We have developed an efficient “one-pot, mix-and-read” strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA) class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins). It is simple, robust, and versatile technique with a very broad application potential as it can be adapted both to small- and large-scale production of one or many different peptide-MHC tetramers for T cell isolation, or epitope screening.  相似文献   
85.

Background

Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called “Enhancers of Trithorax and Polycomb” (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown.

Methodology/Principal Findings

In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene.

Conclusions/Significance

Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.  相似文献   
86.
The Notch signaling pathway (NSP) is an important intercellular communication mechanism that regulates embryo development and adult physiological functions. The Hairless (H) protein is a powerful antagonist of the NSP by its interaction with the Suppressor of Hairless (Su[H]) protein, recruiting the corepressors Gro and CtBP. In the present work, we examined the role of several important amino acids in different H protein domains analyzing four mutant lines of Drosophila melanogaster. The mutant alleles were evaluated by single-strand conformational polymorphism (SSCP) analysis and we located mutated regions at different positions along the sequence of the Hairless gene.  相似文献   
87.
Plant and Soil - Efflux of soil CO2 (soil respiration) plays a crucial role in the global carbon cycle and may be strongly altered by global change. In this study, we measured soil respiration in...  相似文献   
88.
We investigated attachment processes of hydrophobic and hydrophilic particles (diameter = 1 μm) to mature biofilms grown on clay marbles in a sequencing batch biofilm reactor. During a treatment cycle with filtered wastewater containing different fluorescent beads, the progression of particle density in various biofilm compartments (carrier biofilm, basic biofilm layer, biofilm flocs, and sessile ciliates) was determined by flow cytometry, confocal laser scanning microscopy and automated image analysis. Particles were almost completely removed from wastewater by typical processes of particle retention: up to 58% of particles attached to clay marbles, up to 15% were associated with suspended flocs, and up to 10% were ingested by sessile ciliates. Ingestion of particles by ciliates was exceptionally high immediately after wastewater addition (1,200 particles grazer−1 h−1) and continued until approximately 14% of the water had been cleared by ciliate filter feeding. Most probably, ciliate bioturbation increases particle sorption to the basic biofilm. Backwashing of the reactor detached pieces of biofilm and thus released approximately 50% of the particles into rinsing water. Clay marbles in the upper part of the reactor were more efficiently abraded than in the lower part. No indications for selective attachment of the applied hydrophobic and hydrophilic beads were found. As a consequence of interception patterns, organisms at elevated biofilm structures are probably major profiteers of wastewater particles; among them, ciliates may be of major importance because of their highly active digestive food vacuoles.  相似文献   
89.
In the last few years, the number of biologics produced by mammalian cells have been steadily increasing. The advances in cell culture engineering science have contributed significantly to this increase. A common path of product and process development has emerged in the last decade and the host cell lines frequently used have converged to only a few. Selection of cell clones, their adaptation to a desired growth environment, and improving their productivity has been key to developing a new process. However, the fundamental understanding of changes during the selection and adaptation process is still lacking. Some cells may undergo irreversible alteration at the genome level, some may exhibit changes in their gene expression pattern, while others may incur neither genetic reconstruction nor gene expression changes, but only modulation of various fluxes by changing nutrient/metabolite concentrations and enzyme activities. It is likely that the selection of cell clones and their adaptation to various culture conditions may involve alterations not only in cellular machinery directly related to the selected marker or adapted behavior, but also those which may or may not be essential for selection or adaptation. The genomic and proteomic research tools enable one to globally survey the alterations at mRNA and protein levels and to unveil their regulation. Undoubtedly, a better understanding of these cellular processes at the molecular level will lead to a better strategy for 'designing' producing cells. Herein the genomic and proteomic tools are briefly reviewed and their impact on cell culture engineering is discussed.  相似文献   
90.
Hairless (H) is the major antagonist within the Notch signalling pathway of Drosophila melanogaster. By binding to Suppressor of Hairless [Su(H)] and two co-repressors, H induces silencing of Notch target genes in the absence of Notch signals. We have applied genomic engineering to create several new H alleles. To this end the endogenous H locus was replaced with an attP site by homologous recombination, serving as a landing platform for subsequent site directed integration of different H constructs. This way we generated a complete H knock out allele H attP, reintroduced a wild type H genomic and a cDNA-construct (H gwt, H cwt) as well as two constructs encoding H proteins defective of Su(H) binding (H LD, H iD). Phenotypes regarding viability, bristle and wing development were recorded, and the expression of Notch target genes wingless and cut was analysed in mutant wing discs or in mutant cell clones. Moreover, genetic interactions with Notch (N 5419) and Delta (Dl B2) mutants were addressed. Overall, phenotypes were largely as expected: both H LD and H iD were similar to the H attP null allele, indicating that most of H activity requires the binding of Su(H). Both rescue constructs H gwt and H cwt were homozygous viable without phenotype. Unexpectedly, the hemizygous condition uncovered that they were not identical to the wild type allele: notably H cwt showed a markedly reduced activity, suggesting the presence of as yet unidentified regulatory or stabilizing elements in untranslated regions of the H gene. Interestingly, H gwt homozygous cells expressed higher levels of H protein, perhaps unravelling gene-by-environment interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号