首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   802篇
  免费   39篇
  841篇
  2023年   2篇
  2022年   10篇
  2021年   15篇
  2020年   12篇
  2019年   15篇
  2018年   25篇
  2017年   27篇
  2016年   32篇
  2015年   31篇
  2014年   41篇
  2013年   57篇
  2012年   66篇
  2011年   65篇
  2010年   40篇
  2009年   42篇
  2008年   40篇
  2007年   47篇
  2006年   38篇
  2005年   42篇
  2004年   32篇
  2003年   40篇
  2002年   34篇
  2001年   5篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1983年   5篇
  1979年   4篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1965年   1篇
  1964年   1篇
  1926年   1篇
排序方式: 共有841条查询结果,搜索用时 15 毫秒
91.
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.  相似文献   
92.
93.
Pseudomonas aeruginosa is an opportunistic pathogen, which causes numerous infections and can adopt a versatile lifestyle. During chronic infection, P. aeruginosa becomes established as a bacterial community known as a biofilm. Biofilm formation results from the production of a matrix mainly comprised of exopolysaccharides. P. aeruginosa possesses several gene clusters which contribute to the formation of the matrix, including the pel genes. Among the pel genes, pelC encodes an outer membrane protein, which may serve as a transporter of polysaccharide to the bacterial cell surface. Whereas outer membrane proteins usually display an amphipathic β-barrel fold, we show that PelC requires a C-terminal amphipathic α-helix for outer membrane insertion and function. Such a structural feature has only previously been reported for the Wza outer membrane protein of Escherichia coli, and our data suggest that this characteristic may be found in a large family of proteins, particularly outer membrane proteins specialized in polysaccharide transport.  相似文献   
94.
Although overt diurnal rhythms of behavior do not begin until well after birth, molecular studies suggest that the circadian clock may begin much earlier at a cellular level: mouse embryonic fibroblasts, for example, already possess robust clocks. By multiple criteria, we found no circadian clock present in mouse embryonic stem cells. Nevertheless, upon their differentiation into neurons, circadian gene expression was observed. In the first steps along the pathway from ES cells to neurons, a neural precursor cell (NPC) line already showed robust circadian oscillations. Therefore, at a cellular level, the circadian clock likely begins at the very earliest stages of mammalian development.  相似文献   
95.
Petasiger islandicus n. sp. is described and figured from a demographically isolated population of the horned grebe Podiceps auritus auritus (L.) in Lake Myvatn (Iceland). This new species belongs to the group of species with 19 collar spines which possess a large elongate-oval cirrus-sac, well-developed pars prostatica and massive bulb-like cirrus. Within this group, P. islandicus appears most similar to P. oschmarini Kostadinova & Gibson, 1998, a form with similar body dimensions described from the same host, but differs in having a larger head collar, collar spines, oral sucker, pharynx, testes and sucker-width ratio, and a smaller cirrus-sac, cirrus and eggs. Two Nearctic species resemble P. islandicus in general morphology but differ as follows: P. pseudoneocomense Bravo-Hollis, 1969 has a larger body and collar width, notably shorter collar spines, smaller testes and sucker-width ratio, and a shorter but much wider cirrus-sac which is also smaller relative to the ventral sucker and almost entirely anterior to it; and P. caribbensis Nassi, 1980 has a smaller body, shorter collar spines and a seminal vesicle which is small in relation to the cirrus-sac, vitelline fields reaching anteriorly to the level of the genital pore and the intestinal bifurcation is located more anteriorly.  相似文献   
96.
The majority of melanocytes originate from the neural crest cells (NCC) that migrate, spread on the whole embryo’s body to form elements of the nervous system and skeleton, endocrinal glands, muscles and melanocytes. Human melanocytes differentiate mainly from the cranial and trunk NCC. Although melanocyte development has traditionally been associated with the dorsally migrating trunk NCC, there is evidence that a part of melanocytes arise from cells migrating ventrally. The ventral NCC differentiate into neurons and glia of the ganglia or Schwann cells. It has been suggested that the precursors for Schwann cells differentiate into melanocytes. As melanoblasts travel through the dermis, they multiply, follow the process of differentiation and invade the forming human fetal epidermis up to third month. After birth, melanocytes lose the ability to proliferate, except the hair melanocytes that renew during the hair cycle. The localization of neural crest-derived melanocytes in non-cutaneous places e.g. eye (the choroid and stroma of the iris and the ciliary body), ear (cells of the vestibular organ, cochlear stria vascularis), meninges of the brain, heart seems to indicate that repertoire of melanocyte functions is much wider than we expected e.g. the protection of tissues from potentially harmful factors (e.g. free radicals, binding toxins), storage ions, and anti-inflammatory action.  相似文献   
97.
98.
Differentiation of the pancreatic islets in grass snake Natrix natrix embryos, was analyzed using light, transmission electron microscopy, and immuno-gold labeling. The study focuses on the origin of islets, mode of islet formation, and cell arrangement within islets. Two waves of pancreatic islet formation in grass snake embryos were described. The first wave begins just after egg laying when precursors of endocrine cells located within large cell agglomerates in the dorsal pancreatic bud differentiate. The large cell agglomerates were divided by mesenchymal cells thus forming the first islets. This mode of islet formation is described as fission. During the second wave of pancreatic islet formation which is related to the formation of the duct mantle, we observed four phases of islet formation: (a) differentiation of individual endocrine cells from the progenitor layer of duct walls (budding) and their incomplete delamination; (b) formation of two types of small groups of endocrine cells (A/D and B) in the wall of pancreatic ducts; (c) joining groups of cells emerging from neighboring ducts (fusion) and rearrangement of cells within islets; (d) differentiated pancreatic islets with characteristic arrangement of endocrine cells. Mature pancreatic islets of the grass snake contained mainly A endocrine cells. Single B and D or PP–cells were present at the periphery of the islets. This arrangement of endocrine cells within pancreatic islets of the grass snake differs from that reported from most others vertebrate species. Endocrine cells in the pancreas of grass snake embryos were also present in the walls of intralobular and intercalated ducts. At hatching, some endocrine cells were in contact with the lumen of the pancreatic ducts.  相似文献   
99.
Myocardial fatty acid oxidation is regulated by carnitine palmitoyltransferase I (CPT I), which is inhibited by malonyl-CoA. Increased cardiac power causes a fall in malonyl-CoA content and accelerated fatty acid oxidation; however, the mechanism for the decrease in malonyl-CoA is unclear. Malonyl-CoA is formed by acetyl-CoA carboxylase (ACC) and degraded by malonyl-CoA decarboxylase (MCD); thus a fall in malonyl-CoA could be due to activation of MCD, inhibition of ACC, or both. This study assessed the effects of increased cardiac power on malonyl-CoA content and ACC and MCD activities. Anesthetized pigs were studied under control conditions and during increased cardiac power in response to dobutamine infusion and aortic constriction alone, under hyperglycemic conditions, or with the CPT I inhibitor oxfenicine. An increase in cardiac power was accompanied by increased myocardial O(2) consumption, decreased malonyl-CoA concentration, and increased fatty acid oxidation. There were no differences among groups in activity of ACC or AMP-activated protein kinase (AMPK), which physiologically inhibits ACC. There also were no differences in V(max) or K(m) of MCD. Previous studies have demonstrated that AMPK can be inhibited by protein kinase B (PKB); however, PKB was activated by dobutamine and the elevated insulin that accompanied hyperglycemia, but there was no effect on AMPK activity. In conclusion, the fall in malonyl-CoA and increase in fatty acid oxidation that occur with increased cardiac work were not due to inhibition of ACC or activation of MCD, suggesting alternative regulatory mechanisms for the work-induced decrease in malonyl-CoA concentration.  相似文献   
100.
Antioxidative and prooxidative effects of quercetin on A549 cells   总被引:5,自引:0,他引:5  
Quercetin, a common plant polyphenol, has been reported to show both antioxidant and prooxidant properties. We studied the effects of quercetin on A549 cells in in vitro culture. We found that low concentrations of the flavonoid stimulated cell proliferation and increased total antioxidant capacity (TAC) of the cells; while higher concentrations of the flavonoid decreased cell survival and viability, thiol content, TAC and activities of superoxide dismutase, catalase and glutathione S-transferase. Quercetin decreased production of reactive oxygen species in the cells but produced peroxides in the medium. The cellular effects of quercetin are therefore complex and include both antioxidant effects and induction of oxidative stress due to formation of reactive oxygen species in the extracellular medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号