全文获取类型
收费全文 | 1786篇 |
免费 | 143篇 |
国内免费 | 2篇 |
专业分类
1931篇 |
出版年
2023年 | 12篇 |
2022年 | 17篇 |
2021年 | 47篇 |
2020年 | 28篇 |
2019年 | 42篇 |
2018年 | 42篇 |
2017年 | 42篇 |
2016年 | 69篇 |
2015年 | 95篇 |
2014年 | 105篇 |
2013年 | 142篇 |
2012年 | 169篇 |
2011年 | 138篇 |
2010年 | 105篇 |
2009年 | 101篇 |
2008年 | 107篇 |
2007年 | 115篇 |
2006年 | 102篇 |
2005年 | 99篇 |
2004年 | 79篇 |
2003年 | 65篇 |
2002年 | 69篇 |
2001年 | 16篇 |
2000年 | 11篇 |
1999年 | 14篇 |
1998年 | 14篇 |
1997年 | 8篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 5篇 |
1993年 | 5篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1989年 | 5篇 |
1988年 | 3篇 |
1987年 | 7篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 4篇 |
1983年 | 4篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 5篇 |
1977年 | 3篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有1931条查询结果,搜索用时 15 毫秒
101.
Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239 下载免费PDF全文
Wilson NA Reed J Napoe GS Piaskowski S Szymanski A Furlott J Gonzalez EJ Yant LJ Maness NJ May GE Soma T Reynolds MR Rakasz E Rudersdorf R McDermott AB O'Connor DH Friedrich TC Allison DB Patki A Picker LJ Burton DR Lin J Huang L Patel D Heindecker G Fan J Citron M Horton M Wang F Liang X Shiver JW Casimiro DR Watkins DI 《Journal of virology》2006,80(12):5875-5885
The goal of an AIDS vaccine regimen designed to induce cellular immune responses should be to reduce the viral set point and preserve memory CD4 lymphocytes. Here we investigated whether vaccine-induced cellular immunity in the absence of any Env-specific antibodies can control viral replication following multiple low-dose challenges with the highly pathogenic SIVmac239 isolate. Eight Mamu-A*01-positive Indian rhesus macaques were vaccinated with simian immunodeficiency virus (SIV) gag, tat, rev, and nef using a DNA prime-adenovirus boost strategy. Peak viremia (P = 0.007) and the chronic phase set point (P = 0.0192) were significantly decreased in the vaccinated cohort, out to 1 year postinfection. Loss of CD4(+) memory populations was also ameliorated in vaccinated animals. Interestingly, only one of the eight vaccinees developed Env-specific neutralizing antibodies after infection. The control observed was significantly improved over that observed in animals vaccinated with SIV gag only. Vaccine-induced cellular immune responses can, therefore, exert a measure of control over replication of the AIDS virus in the complete absence of neutralizing antibody and give us hope that a vaccine designed to induce cellular immune responses might control viral replication. 相似文献
102.
Buckling A Harrison F Vos M Brockhurst MA Gardner A West SA Griffin A 《FEMS microbiology ecology》2007,62(2):135-141
Why should organisms cooperate with each other? Helping close relatives that are likely to share the same genes (kin selection) is one important explanation that is likely to apply across taxa. The production of metabolically costly extracellular iron-scavenging molecules (siderophores) by microorganisms is a cooperative behaviour because it benefits nearby conspecifics. We review experiments focusing on the production of the primary siderophore (pyoverdin) of the opportunistic bacterial pathogen, Pseudomonas aeruginosa, which test kin selection theories that seek to explain the evolution of cooperation. First, cooperation is indeed favoured when individuals interact with their close relatives and when there is competition between groups of cooperators and noncooperators, such that the benefit of cooperation can be realized. Second, the relative success of cheats and cooperators is a function of their frequencies within populations. Third, elevated mutation rates can confer a selective disadvantage under conditions when cooperation is beneficial, because high mutation rates reduce how closely bacteria are related to each other. Fourth, cooperative pyoverdin production is also shown to be favoured by kin selection in vivo (caterpillars), and results in more virulent infections. Finally, we briefly outline ongoing and future work using this experimental system. 相似文献
103.
Hopley PJ Marshall JD Weedon GP Latham AG Herries AI Kuykendall KL 《Journal of human evolution》2007,53(5):620-634
Reconstructing Plio-Pleistocene African paleoenvironments is important for models of early hominin evolution, but is often hampered by low-resolution or discontinuous climatic data. Here, we present high-resolution stable oxygen and carbon isotope time series data from two flowstones (secondary cave deposits) from the South African hominin-bearing Makapansgat Valley. The age of the older of the two flowstones (Collapsed Cone) is constrained by magnetostratigraphy to approximately 4-5 Ma; the younger flowstone (Buffalo Cave) grew between 2.0-1.5 Ma, as determined by magnetostratigraphy and orbital tuning of the isotopic data. The carbon isotope data is used as a proxy for the proportion of C(4) grasses in the local environment and the oxygen isotope data reflects monsoon rainfall intensity. The carbon isotope evidence indicates that in the late Miocene/early Pliocene, the local environment was dominated by C(3) vegetation, whereas, in the Plio-Pleistocene, it was composed of a mixture of C(3) and C(4) vegetation. This suggests that C(4) grasses became a significant part of the Makapansgat Valley ecosystem at approximately 4-5 Ma, towards the end of the late Neogene global expansion of C(4) grasses. After this initial expansion, South Africa experienced further fluctuations in the proportion of C(3) and C(4) vegetation during the Plio-Pleistocene, in response to regional and global climatic changes. Most notably, the Buffalo Cave flowstone provides evidence for C(4) grass expansion at ca. 1.7 Ma that we suggest was a response to African aridity caused by the onset of the Walker Circulation in the Pacific Ocean at this time. 相似文献
104.
105.
Background
Aflatoxin is a potent carcinogen that can contaminate grain infected with the fungus Aspergillus flavus. However, resistance to aflatoxin accumulation in maize is a complex trait with low heritability. Here, two complementary analyses were performed to better understand the mechanisms involved. The first coupled results of a genome-wide association study (GWAS) that accounted for linkage disequilibrium among single nucleotide polymorphisms (SNPs) with gene-set enrichment for a pathway-based approach. The rationale was that the cumulative effects of genes in a pathway would give insight into genetic differences that distinguish resistant from susceptible lines of maize. The second involved finding non-pathway genes close to the most significant SNP-trait associations with the greatest effect on reducing aflatoxin in multiple environments. Unlike conventional GWAS, the latter analysis emphasized multiple aspects of SNP-trait associations rather than just significance and was performed because of the high genotype x environment variability exhibited by this trait.Results
The most significant metabolic pathway identified was jasmonic acid (JA) biosynthesis. Specifically, there was at least one allelic variant for each step in the JA biosynthesis pathway that conferred an incremental decrease to the level of aflatoxin observed among the inbred lines in the GWAS panel. Several non-pathway genes were also consistently associated with lowered aflatoxin levels. Those with predicted functions related to defense were: leucine-rich repeat protein kinase, expansin B3, reversion-to-ethylene sensitivity1, adaptor protein complex2, and a multidrug and toxic compound extrusion protein.Conclusions
Our genetic analysis provided strong evidence for several genes that were associated with aflatoxin resistance. Inbred lines that exhibited lower levels of aflatoxin accumulation tended to share similar haplotypes for genes specifically in the pathway of JA biosynthesis, along with several non-pathway genes with putative defense-related functions. Knowledge gained from these two complementary analyses has improved our understanding of population differences in aflatoxin resistance.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1874-9) contains supplementary material, which is available to authorized users. 相似文献106.
The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak—potentially, the largest of its kind—as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises. 相似文献
107.
Li Jing Li Mai Jian-Zhong Zhang Jian-Gang Wang Yue Chang Jian-Da Dong Feng-Ying Guo P. Andy Li 《International journal of biological sciences》2013,9(9):980-988
The objective of this study was to study the effect of diabetic hyperglycemia on astrocytes after forebrain ischemia. Streptozotocin (STZ)-injected hyperglycemic and vehicle-injected normoglycemic rats were subjected to 15 minutes of forebrain ischemia. The brains were harvested in sham-operated controls and in animals with 1 and 6 h of recirculation following ischemia. Brain damage was accessed by haematoxylin and eosin (H&E) staining, cleaved caspase-3 immunohistochemistry and TdT-mediated-dUTP nick end labeling (TUNEL). Anti-GFAP antibody was employed to study astrocytes. The results showed that the 15-minute ischemia caused neuronal death after 1 and 6 h of reperfusion as revealed by increased numbers of karyopyknotic cells, edema, TUNEL-positive and active caspase-3-positive cells. Ischemia also activated astrocytes in the cingulated cortex as reflected by astrocyte stomata hypertrophy, elongated dendrites and increases in the number of dendrites, and immunoreactivity of GFAP. Diabetic hyperglycemia further enhanced neuronal death and suppressed ischemia-induced astrocyte activation. Further, diabetes-damaged astrocytes have increased withdrawal of the astrocyte end-foot from the cerebral blood vessel wall. It is concluded that diabetes-induced suppression and damages to astrocytes may contribute to its detrimental effects on recovery from cerebral ischemia. 相似文献
108.
Zhao Shan Qinglin Han Jia Nie Xuezhi Cao Zuojia Chen Shuying Yin Yayi Gao Fang Lin Xiaohui Zhou Ke Xu Huimin Fan Zhikang Qian Bing Sun Jin Zhong Bin Li Andy Tsun 《The Journal of biological chemistry》2013,288(49):35093-35103
Although lysine methylation is classically known to regulate histone function, its role in modulating antiviral restriction factor activity remains uncharacterized. Interferon-induced transmembrane protein 3 (IFITM3) was found monomethylated on its lysine 88 residue (IFITM3-K88me1) to reduce its antiviral activity, mediated by the lysine methyltransferase SET7. Vesicular stomatitis virus and influenza A virus infection increased IFITM3-K88me1 levels by promoting the interaction between IFITM3 and SET7, suggesting that this pathway could be hijacked to support infection; conversely, IFN-α reduced IFITM3-K88me1 levels. These findings may have important implications in the design of therapeutics targeting protein methylation against infectious diseases. 相似文献
109.
Wu M Neilson A Swift AL Moran R Tamagnine J Parslow D Armistead S Lemire K Orrell J Teich J Chomicz S Ferrick DA 《American journal of physiology. Cell physiology》2007,292(1):C125-C136
Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basis of this increased glycolysis and reduced mitochondrial respiration was investigated in two human cancer cell lines, H460 and A549. The bioenergetic phenotype was analyzed by measuring cellular respiration, glycolysis rate, and ATP turnover of the cells in response to various pharmacological modulators. H460 and A549 cells displayed a dependency on glycolysis and an ability to significantly upregulate this pathway when their respiration was inhibited. The converse, however, was not true. The cell lines were attenuated in oxidative phosphorylation (OXPHOS) capacity and were unable to sufficiently upregulate mitochondrial OXPHOS when glycolysis was disabled. This observed mitochondrial impairment was intimately linked to the increased dependency on glycolysis. Furthermore, it was demonstrated that H460 cells were more glycolytic, having a greater impairment of mitochondrial respiration, compared with A549 cells. Finally, the upregulation of glycolysis in response to mitochondrial ATP synthesis inhibition was dependent on AMP-activated protein kinase activity. In summary, our results demonstrate a bioenergetic phenotype of these two cancer cell lines characterized by increased rate of glycolysis and a linked attenuation in their OXPHOS capacity. These metabolic alterations provide a mechanistic explanation for the growth advantage and apoptotic resistance of tumor cells. oxygen consumption; oxidative phosphorylation; Warburg effect; real time 相似文献
110.