首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2553篇
  免费   233篇
  国内免费   2篇
  2788篇
  2023年   14篇
  2022年   21篇
  2021年   61篇
  2020年   28篇
  2019年   51篇
  2018年   55篇
  2017年   49篇
  2016年   94篇
  2015年   124篇
  2014年   132篇
  2013年   180篇
  2012年   226篇
  2011年   178篇
  2010年   137篇
  2009年   122篇
  2008年   139篇
  2007年   145篇
  2006年   144篇
  2005年   131篇
  2004年   111篇
  2003年   83篇
  2002年   100篇
  2001年   37篇
  2000年   36篇
  1999年   36篇
  1998年   28篇
  1997年   17篇
  1996年   16篇
  1995年   11篇
  1994年   17篇
  1993年   12篇
  1992年   11篇
  1991年   15篇
  1990年   13篇
  1989年   12篇
  1988年   10篇
  1987年   12篇
  1986年   11篇
  1985年   7篇
  1984年   13篇
  1983年   11篇
  1982年   11篇
  1981年   6篇
  1978年   11篇
  1977年   8篇
  1975年   6篇
  1974年   13篇
  1973年   7篇
  1949年   12篇
  1948年   5篇
排序方式: 共有2788条查询结果,搜索用时 15 毫秒
941.
A combined treatment of sonication (2 min) and vacuum infiltration (2 min) stimulated isoflavones production of 75.26 mg g?1 DW which was 15.11-fold higher than control hairy root line at optimal harvest time of 40 days. Addition of MeJ at 100 μM concentration with 72 h exposure time on 30 day-old hairy root culture further enhanced total isoflavones production of 53.16 mg g?1 DW (10.67-fold) and SA at 200 μM concentration with 96 h exposure period enhanced the production of isoflavones (28.79 mg g?1 DW; 5.78-fold). MeJ-treated hairy roots reduced biomass accumulation whereas sonication, vacuum infiltration and SA did not exhibit a negative effect on biomass growth.  相似文献   
942.
The comparative phenotypic analysis of mutants is often hampered by their diverse and poorly characterised genetic backgrounds. To overcome this problem, a suite of recombinant spring barley lines was developed for four starch biosynthesis genes in a common elite background. Rapid breeding progress was made by combining foreground and background selection with the screening of bulked families. A toolkit of perfect co-dominant PCR assays was developed for the four target genes, based on the causative single nucleotide polymorphisms underlying their starch phenotypes. These were used for foreground selection during backcrossing and selfing, and may be applied to bulks of up to ten plants. Screening bulks meant that large numbers of individuals with known family structure were rapidly assessed and that breeding effort was accurately targeted. These markers were also used for quality control during field multiplication and should be readily transferable to any crosses involving these four mutations. Background selection amongst BC1 progeny known to be heterozygous for the target starch alleles identified individuals which were relatively enriched for the recurrent parent across the rest of the genome. These were further advanced and true-breeding recombinants were selected which carry the target starch mutations in a largely recurrent parent background. The resulting set of BC2F5 pre-breeding lines should enable meaningful analysis of the starch phenotypes and facilitate their transfer into commercial breeding programmes.  相似文献   
943.
Gestation length, birth weight, and weaning weight of F2 Nelore-Angus calves (n = 737) with designed extensive full-sibling and half-sibling relatedness were evaluated for association with 34,957 SNP markers. In analyses of birth weight, random relatedness was modeled three ways: 1) none, 2) random animal, pedigree-based relationship matrix, or 3) random animal, genomic relationship matrix. Detected birth weight-SNP associations were 1,200, 735, and 31 for those parameterizations respectively; each additional model refinement removed associations that apparently were a result of the built-in stratification by relatedness. Subsequent analyses of gestation length and weaning weight modeled genomic relatedness; there were 40 and 26 trait-marker associations detected for those traits, respectively. Birth weight associations were on BTA14 except for a single marker on BTA5. Gestation length associations included 37 SNP on BTA21, 2 on BTA27 and one on BTA3. Weaning weight associations were on BTA14 except for a single marker on BTA10. Twenty-one SNP markers on BTA14 were detected in both birth and weaning weight analyses.  相似文献   
944.
Kinase mediated phosphorylation signaling is extensively involved in cellular functions and human diseases, and unraveling phosphorylation networks requires the identification of substrates targeted by kinases, which has remained challenging. We report here a novel proteomic strategy to identify the specificity and direct substrates of kinases by coupling phosphoproteomics with a sensitive stable isotope labeled kinase reaction. A whole cell extract was moderately dephosphorylated and subjected to in vitro kinase reaction under the condition in which 18O-ATP is the phosphate donor. The phosphorylated proteins are then isolated and identified by mass spectrometry, in which the heavy phosphate (+85.979 Da) labeled phosphopeptides reveal the kinase specificity. The in vitro phosphorylated proteins with heavy phosphates are further overlapped with in vivo kinase-dependent phosphoproteins for the identification of direct substrates with high confidence. The strategy allowed us to identify 46 phosphorylation sites on 38 direct substrates of extracellular signal-regulated kinase 1, including multiple known substrates and novel substrates, highlighting the ability of this high throughput method for direct kinase substrate screening.Protein phosphorylation regulates almost all aspects of cell life, such as cell cycle, migration, and apoptosis (1), and deregulation of protein phosphorylation is one of the most frequent causes or consequences of human diseases including cancers, diabetes, and immune disorders (2). Up till now, however, known substrates are far from saturation for the majority of protein kinases (3); thus, mapping comprehensive kinase-substrate relationships is essential to understanding biological mechanisms and uncovering new drug targets (4).Accompanied with advances of high-speed and high-resolution mass spectrometry, the technique of kinase substrate screening using proteomic strategy is quickly evolving (57). Mass spectrometry has been extensively used for kinase-substrate interaction mapping (8) and global phosphorylation profiling (9). Although thousands of phosphorylation sites have been detected, complex phosphorylation cascade and crosstalk between pathways make it difficult for large-scale phosphoproteomics to reveal direct relationships between protein kinases and their substrates (10, 11). Extensive statistics, bioinformatics, and downstream biochemical assays are mandatory for the substrate verification (12, 13). Another strategy uses purified, active kinases to phosphorylate cell extracts in vitro, followed by mass spectrometric analysis to identify phosphoproteins. This approach inevitably faces the major challenge of separating real sites phosphorylated by target kinase and the phosphorylation triggered by endogenous kinases from cell lysates (14). Analog-sensitive kinase allele (15) overcomes the issue by utilizing the engineered kinase that can exclusively take a bulky-ATP analog under the reaction condition. Analog-sensitive kinase allele has been coupled with γ-thiophosphate analog ATP to facilitate the mass spectrometric analysis (1618).We have introduced kinase assay-linked phosphoproteomics (KALIP)1 to link the in vitro substrate identification and physiological phosphorylation events together in a high throughput manner (19, 20). The strategy, however, has only been applied to identify direct substrates of tyrosine kinases. In this study, we expanded the application of KALIP to serine/threonine kinases by introducing a quantitative strategy termed Stable Isotope Labeled Kinase Assay-Linked Phosphoproteomics (siKALIP). The method was applied to identify direct substrates of extracellular signal-regulated kinase 1 (ERK1), a serine/threonine kinase acting as an essential component of the Mitogen-activated protein kinase (MAPK) signal transduction pathway (21). A defect in the MAP/ERK pathway causes uncontrolled growth, which likely leads to cancer (22) and other diseases (2325). ERK1 can be activated by growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and nerve growth factor (NGF) (26). Upon stimulation, ERK1 phosphorylates hundreds of substrates in various cellular compartments including cytoplasm, nucleus, and membrane (27). Among 38 ERK1 direct substrates identified by siKALIP, more than one third are previously discovered by classical molecular biology approaches, highlighting high specificity and sensitivity of the strategy. The results also support the hypothesis that ERK1 plays complex roles in multiple pathways that are essential for the cell growth regulation.  相似文献   
945.
946.
Treatment options for people living with amyotrophic lateral sclerosis (ALS) are limited and ineffective. Recently, dexpramipexole (RPPX) was advanced into human ALS clinical trials. In the current studies, we investigated RPPX in two parallel screening systems: 1) appropriately powered, sibling-matched, gender-balanced survival efficacy screening in high-copy B6-SJL-SOD1G93A/Gur1 mice, and 2) high-content neuronal survival screening in primary rat cortical neurons transfected with wild-type human TDP43 or mutant human TDP43. In both cases, we exposed the test systems to RPPX levels approximating those achieved in human Phase II clinical investigations. In SOD1G93A mice, no effect was observed on neuromotor disease progression or survival. In primary cortical neurons transfected with either mutant or wild-type human TDP43, a marginally significant improvement in a single indicator of neuronal survival was observed, and only at the 10 µM RPPX treatment. These systems reflect both mutant SOD1- and TDP43-mediated forms of neurodegeneration. The systems also reflect both complex non-cell autonomous and neuronal cell autonomous disease mechanisms. The results of these experiments, taken in context with results produced by other molecules tested in both screening systems, do not argue positively for further study of RPPX in ALS.  相似文献   
947.
Scavenger receptor class B type I (SR-BI) mediates the selective transfer of cholesteryl ester from HDL to cells. We previously established that SR-BI overexpressed in livers of apolipoprotein A-I-deficient mice processes exogenous human HDL2 to incrementally smaller HDL particles. When mixed with normal mouse plasma either in vivo or ex vivo, SR-BI-generated HDL "remnants" rapidly remodel to form HDL-sized lipoproteins. In this study, we analyzed HDLs throughout the process of HDL remnant formation and investigated the mechanism of conversion to larger particles. Upon interacting with SR-BI, alpha-migrating HDL2 is initially converted to a prealpha-migrating particle that is ultimately processed to a smaller alpha-migrating HDL remnant. SR-BI does not appear to generate prebeta-1 HDL particles. When incubated with isolated lipoprotein fractions, HDL remnants are converted to lipoprotein particles corresponding in size to the particle incubated with the HDL remnant. HDL remnant conversion is not altered in phospholipid transfer protein (PLTP)-deficient mouse plasma or by the addition of purified PLTP. Although LCAT-deficient plasma promoted only partial conversion, this deficiency was attributable to the nature of HDL particles in LCAT-/- mice rather than to a requirement for LCAT in the remodeling process. We conclude that HDL remnants, generated by SR-BI, are converted to larger particles by rapidly reassociating with existing HDL particles in an enzyme-independent manner.  相似文献   
948.
Proteomics discovery of novel cancer serum biomarkers is hindered by the great complexity of serum, patient-to-patient variability, and triggering by the tumor of an acute-phase inflammatory reaction. This host response alters many serum protein levels in cancer patients, but these changes have low specificity as they can be triggered by diverse causes. We addressed these hurdles by utilizing a xenograft mouse model coupled with an in-depth 4-D protein profiling method to identify human proteins in the mouse serum. This strategy ensures that identified putative biomarkers are shed by the tumor, and detection of low-abundance proteins shed by the tumor is enhanced because the mouse blood volume is more than a thousand times smaller than that of a human. Using TOV-112D ovarian tumors, more than 200 human proteins were identified in the mouse serum, including novel candidate biomarkers and proteins previously reported to be elevated in either ovarian tumors or the blood of ovarian cancer patients. Subsequent quantitation of selected putative biomarkers in human sera using label-free multiple reaction monitoring (MRM) mass spectrometry (MS) showed that chloride intracellular channel 1, the mature form of cathepsin D, and peroxiredoxin 6 were elevated significantly in sera from ovarian carcinoma patients.  相似文献   
949.
Behavioral studies have shown that, at a population level, women perform better on tests of social cognition and empathy than men. Furthermore Autism Spectrum Disorders (ASDs), which are characterized by impairments in social functioning and empathy, occur more commonly in males than females. These findings have led to the hypothesis that differences in the functioning of the social brain between males and females contribute to the greater vulnerability of males to ASD and the suggestion that ASD may represent an extreme form of the male brain. Here we sought to investigate this hypothesis by determining: (i) whether males and females differ in social brain function, and (ii) whether any sex differences in social brain function are exaggerated in individuals with ASD. Using fMRI we show that males and females differ markedly in social brain function when making social decisions from faces (compared to simple sex judgements) especially when making decisions of an affective nature, with the greatest sex differences in social brain activation being in the inferior frontal cortex (IFC). We also demonstrate that this difference is exaggerated in individuals with ASD, who show an extreme male pattern of IFC function. These results show that males and females differ significantly in social brain function and support the view that sex differences in the social brain contribute to the greater vulnerability of males to ASDs.  相似文献   
950.
Transient receptor potential (TRP) channels TRPC3 and TRPC6 are expressed in both sensory neurons and cochlear hair cells. Deletion of TRPC3 or TRPC6 in mice caused no behavioural phenotype, although loss of TRPC3 caused a shift of rapidly adapting (RA) mechanosensitive currents to intermediate-adapting currents in dorsal root ganglion sensory neurons. Deletion of both TRPC3 and TRPC6 caused deficits in light touch and silenced half of small-diameter sensory neurons expressing mechanically activated RA currents. Double TRPC3/TRPC6 knock-out mice also showed hearing impairment, vestibular deficits and defective auditory brain stem responses to high-frequency sounds. Basal, but not apical, cochlear outer hair cells lost more than 75 per cent of their responses to mechanical stimulation. FM1-43-sensitive mechanically gated currents were induced when TRPC3 and TRPC6 were co-expressed in sensory neuron cell lines. TRPC3 and TRPC6 are thus required for the normal function of cells involved in touch and hearing, and are potential components of mechanotransducing complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号