首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2536篇
  免费   233篇
  国内免费   2篇
  2023年   12篇
  2022年   7篇
  2021年   61篇
  2020年   28篇
  2019年   51篇
  2018年   55篇
  2017年   49篇
  2016年   94篇
  2015年   124篇
  2014年   132篇
  2013年   180篇
  2012年   226篇
  2011年   178篇
  2010年   137篇
  2009年   122篇
  2008年   139篇
  2007年   145篇
  2006年   144篇
  2005年   131篇
  2004年   111篇
  2003年   83篇
  2002年   100篇
  2001年   37篇
  2000年   36篇
  1999年   36篇
  1998年   28篇
  1997年   17篇
  1996年   16篇
  1995年   11篇
  1994年   17篇
  1993年   12篇
  1992年   11篇
  1991年   15篇
  1990年   13篇
  1989年   12篇
  1988年   10篇
  1987年   12篇
  1986年   11篇
  1985年   7篇
  1984年   13篇
  1983年   11篇
  1982年   11篇
  1981年   6篇
  1978年   11篇
  1977年   8篇
  1975年   6篇
  1974年   13篇
  1973年   7篇
  1949年   12篇
  1948年   5篇
排序方式: 共有2771条查询结果,搜索用时 15 毫秒
41.
Summary This study examines the relationship between warm-up rate, body mass, metabolic rate, thermal conductance and normothermic body temperature in heterothermic mammals during arousal from torpor. Predictions based on the assumption that the energetic cost of arousal has been minimised are tested using data for 35 species. The observation that across-species warm-up rate correlates negatively with body mass is confirmed using a comparative technique which removes confounding effects due to the non-independence of species data due to shared common ancestry. Mean warm-up rate during arousal correlates negatively with basal metabolic rate and positively with the temperature difference through which the animal warms, having controlled for other factors. These results suggest that selection has operated to minimise the overall energetic, cost of warm-up. In contrast, peak warm-up rate during arousal correlates positively with peak metabolic rate during arousal, and negatively with thermal conductance, when body mass has been taken into account. These results suggest that peak warm-up rate is more sensitive to the fundamental processes of heat generation and loss. Although heterothermic marsupials have lower normothermic body temperatures and basal metabolic rates, marsupials and heterothermic eutherian mammals do not differ systematically in warm-up rate. Pre-flight warm-up rates in one group of endothermic insects, the bees, are significantly higher than predictions based on rates of arousal of a mammal of the same body mass.Abbreviations BMR basal metabolic rate - ICM independent comparisons method - MWR mean warm-up rate - PMR peak metabolic rate - PWR peak·warm-up rate - Tbactivity body temperature during activity - Tbtorpor body temperature during torpor - T arousal increase in body temperature during arousal  相似文献   
42.
Summary We report here an improved method for nuclei counting utilizing Triton-X 100 to reduce the size of cell debris, thereby allowing the use of a particle sizer/counter. Furthermore, nuclei are completely released within 30 seconds, as compared to 1 hour using hypotonic solution. The method is accurate above 0.3 × 106 cells/mL.  相似文献   
43.
Photosynthesis in submersed macrophytes of a temperate lake   总被引:4,自引:1,他引:3       下载免费PDF全文
Beer S  Wetzel RG 《Plant physiology》1982,70(2):488-492
The photosynthetic carbon fixation pathways and levels of carbon-fixing enzymes of four dominant submersed macrophytes of Lawrence Lake, southern Michigan, were investigated during the main growth season (May to November). All four species (Scirpus subterminalis Torr., Najas flexilis (Willd.) Rostk. and Schmidt, Potamogeton praelongus Wulf., and Myriophyllum heterophyllum Michx.) were C3 plants based on their patterns of 14C pulse-chase incorporation. High levels of phosphoenolpyruvate carboxylase were also found in these species. These levels, as well as the ribulose 1,5-biphosphate carboxylase/phosphoenolpyruvate carboxylase ratio of the leaves, varied throughout the growing season and exhibited highest values in July. No shift in carbon fixation pathways, however, could be detected from July to October. The possible functions of phosphoenolypyruvate carboxylase in these plants, as well as the significance of C3 metabolism in submersed plants of temperate lakes, are delineated.  相似文献   
44.
The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak—potentially, the largest of its kind—as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.  相似文献   
45.
46.
Over-activation of excitatory NMDA receptors and the resulting Ca2+ overload is the main cause of neuronal toxicity during stroke. CaMKII becomes misregulated during such events. Biochemical studies show either a dramatic loss of CaMKII activity or its persistent autonomous activation after stroke, with both of these processes being implicated in cell toxicity. To complement the biochemical data, we monitored CaMKII activation in living hippocampal neurons in slice cultures using high spatial/temporal resolution two-photon imaging of the CaMKIIα FRET sensor, Camui. CaMKII activation state was estimated by measuring Camui fluorescence lifetime. Short NMDA insult resulted in Camui activation followed by a redistribution of its protein localization: an increase in spines, a decrease in dendritic shafts, and concentration into numerous clusters in the cell soma. Camui activation was either persistent (> 1–3 hours) or transient (~20 min) and, in general, correlated with its protein redistribution. After longer NMDA insult, however, Camui redistribution persisted longer than its activation, suggesting distinct regulation/phases of these processes. Mutational and pharmacological analysis suggested that persistent Camui activation was due to prolonged Ca2+ elevation, with little impact of autonomous states produced by T286 autophosphorylation and/or by C280/M281 oxidation. Cell injury was monitored using expressible mitochondrial marker mito-dsRed. Shortly after Camui activation and clustering, NMDA treatment resulted in mitochondrial swelling, with persistence of the swelling temporarily linked to the persistence of Camui activation. The results suggest that in living neurons excitotoxic insult produces long-lasting Ca2+-dependent active state of CaMKII temporarily linked to cell injury. CaMKII function, however, is to be restricted due to strong clustering. The study provides the first characterization of CaMKII activation dynamics in living neurons during excitotoxic insults.  相似文献   
47.
48.
Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Korea has been enhanced from 1999 to 2017 by analyzing long‐term atmospheric CO2 concentration measurements at the Anmyeondo Station (36.53°N, 126.32°E) located in the western coast. The influence of terrestrial carbon flux on atmospheric CO2 concentrations (ΔCO2) is estimated from the difference of CO2 concentrations that were influenced by the land sector (through easterly winds) and the Yellow Sea sector (through westerly winds). We find a significant trend in ΔCO2 of ?4.75 ppm per decade (p < .05) during the vegetation growing season (May through October), suggesting that the regional terrestrial carbon uptake has increased relative to the surrounding ocean areas. Combined analysis with satellite measured normalized difference vegetation index and gross primary production shows that the enhanced carbon uptake is associated with significant nationwide increases in vegetation and its production. Process‐based terrestrial model and inverse model simulations estimate that regional terrestrial carbon uptake increases by up to 18.9 and 8.0 Tg C for the study period, accounting for 13.4% and 5.7% of the average annual domestic carbon emissions, respectively. Atmospheric chemical transport model simulations indicate that the enhanced terrestrial carbon sink is the primary reason for the observed ΔCO2 trend rather than anthropogenic emissions and atmospheric circulation changes. Our results highlight the fact that atmospheric CO2 measurements could open up the possibility of detecting regional changes in the terrestrial carbon cycle even where anthropogenic emissions are not negligible.  相似文献   
49.
Gaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above‐ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in situ observations at 100 m spatial resolution to evaluate AGB estimated by nine dynamic global vegetation models (DGVMs). The global total forest AGB of the nine DGVMs is 365 ± 66 Pg C, the spread corresponding to the standard deviation between models, compared to 275 Pg C with an uncertainty of ~13.5% from GlobBiomass. Model‐data discrepancy in total forest AGB can be attributed to their discrepancies in the AGB density and/or forest area. While DGVMs represent the global spatial gradients of AGB density reasonably well, they only have modest ability to reproduce the regional spatial gradients of AGB density at scales below 1000 km. The 95th percentile of AGB density (AGB95) in tropics can be considered as the potential maximum of AGB density which can be reached for a given annual precipitation. GlobBiomass data show local deficits of AGB density compared to the AGB95, particularly in transitional and/or wet regions in tropics. We hypothesize that local human disturbances cause more AGB density deficits from GlobBiomass than from DGVMs, which rarely represent human disturbances. We then analyse empirical relationships between AGB density deficits and forest cover changes, population density, burned areas and livestock density. Regression analysis indicated that more than 40% of the spatial variance of AGB density deficits in South America and Africa can be explained; in Southeast Asia, these factors explain only ~25%. This result suggests TRENDY v6 DGVMs tend to underestimate biomass loss from diverse and widespread anthropogenic disturbances, and as a result overestimate turnover time in AGB.  相似文献   
50.
Sleep and Biological Rhythms - To examine the psychometric properties of the Sleep Condition Indicator (SCI) using different psychometric approaches [including classical test theory, Rasch models,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号