首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3065篇
  免费   165篇
  国内免费   3篇
  3233篇
  2023年   8篇
  2022年   16篇
  2021年   32篇
  2020年   34篇
  2019年   33篇
  2018年   64篇
  2017年   61篇
  2016年   88篇
  2015年   127篇
  2014年   142篇
  2013年   183篇
  2012年   211篇
  2011年   216篇
  2010年   137篇
  2009年   122篇
  2008年   199篇
  2007年   222篇
  2006年   183篇
  2005年   179篇
  2004年   194篇
  2003年   188篇
  2002年   171篇
  2001年   38篇
  2000年   25篇
  1999年   29篇
  1998年   34篇
  1997年   23篇
  1996年   20篇
  1995年   11篇
  1994年   11篇
  1993年   14篇
  1992年   18篇
  1991年   8篇
  1990年   12篇
  1989年   14篇
  1988年   10篇
  1987年   10篇
  1986年   5篇
  1985年   15篇
  1984年   11篇
  1983年   9篇
  1982年   15篇
  1981年   10篇
  1980年   8篇
  1979年   8篇
  1977年   17篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1970年   6篇
排序方式: 共有3233条查询结果,搜索用时 15 毫秒
131.
DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.  相似文献   
132.
The systemic vasculature exhibits attenuated vasoconstriction following chronic hypoxia (CH) that is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization. We hypothesized that increased production of arachidonic acid metabolites such as the cyclooxygenase product prostacyclin or cytochrome p-450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) contributes to VSM cell hyperpolarization following CH. VSM cell resting membrane potential (Em) was measured in superior mesenteric artery strips isolated from rats with control barometric pressure (Pb, congruent with 630 Torr) and CH (Pb, 380 Torr for 48 h). VSM cell Em was normalized between groups following administration of the CYP inhibitors 17-octadecynoic acid and SKF-525A. VSM cell hyperpolarization after CH was not altered by cyclooxygenase inhibition, whereas the selective CYP2C9 inhibitor sulfaphenazole normalized VSM cell Em between groups. Iberiotoxin also normalized VSM cell Em, which suggests that large-conductance, Ca2+-activated K+ (BKCa) channel activity is increased after CH. Sulfaphenazole administration restored phenylephrine-induced and myogenic vasoconstriction and Ca2+ responses of mesenteric resistance arteries isolated from CH rats to control levels. Western blot experiments demonstrated that CYP2C9 protein levels were greater in mesenteric arteries from CH rats. In addition, 11,12-EET levels were elevated in endothelial cells from CH rats compared with controls. We conclude that enhanced CYP2C9 expression and 11,12-EET production following CH contributes to BKCa channel-dependent VSM cell hyperpolarization and attenuated vasoreactivity.  相似文献   
133.
Although phenothiazines are known as multidrug resistance modifiers, the molecular mechanism of their activity remains unclear. Since phenothiazine molecules are amphiphilic, the interactions with membrane lipids may be related, at least partially, to their biological effects. Using the set of phenothiazine maleates differing in the type of phenothiazine ring substitution at position 2 and/or in the length of the alkyl bridge-connecting ring system and side chain group, we investigated if their ability to modulate the multidrug resistance of cancer cells correlated with model membrane perturbing potency. The influence exerted on lipid bilayers was determined by liposome/buffer partition coefficient measurements (using the absorption spectra second-derivative method), fluorescence spectroscopy and calorimetry. Biological effects were assessed by a flow cytometric functional test based on differential accumulation of fluorescent probe DiOC(2)(3) by parental and drug-resistant cells. We found that all phenothiazine maleates were incorporated into lipid bilayers and altered their biophysical properties. With only few exceptions, the extent of membrane perturbation induced by phenothiazine maleates correlated with their lipophilicity. Within the group of studied derivatives, the compounds substituted with CF(3)- at position 2 of phenothiazine ring were the most active membrane perturbants. No clear relation was found between effects exerted by phenothiazine maleates on model membranes and their ability to modulate P-glycoprotein transport activity.  相似文献   
134.
Deficient in DNA Methylation 1 (DDM1) protein is required to maintain the DNA methylation status of Arabidopsis thaliana. DDM1 is a member of the broad SWI2/SNF2 protein family. Because of its phylogenetic position, DDM1 has been speculated to act as a chromatin-remodeling factor. Here we used a purified recombinant DDM1 protein to investigate whether it can remodel chromatin in vitro. We show that DDM1 is an ATPase stimulated by both naked and nucleosomal DNA. DDM1 binds to the nucleosome and promotes chromatin remodeling in an ATP-dependent manner. Specifically, it induces nucleosome repositioning on a short DNA fragment. The enzymatic activity of DDM1 is not affected by DNA methylation. The relevance of these findings to the in vivo role of DDM1 is discussed.  相似文献   
135.
Propionibacterium propionicum belongs to the "acnes group" of propionibacteria, which is currently considered as clinically important because of its growing potential in infections, in particular with those connected with immune system dysfunctions. Propionibacteria are thought to be actinomycete-like microorganisms and may still cause diagnostic difficulties. The chloroform-methanol extracts of the cell mass of P. propionicum (type strain) gave in TLC analysis the characteristic glycolipid profile containing four major glycolipids, labeled G(1) through G(4). These polar lipids were found to be useful chemotaxonomic markers to differentiate P. propionicum from other cutaneous propionibacteria, in particular from strains of the acnes group. Glycolipids G(1)-G(4) were isolated and purified using gel-permeation chromatography, TLC, and high performance liquid chromatography, and their structures were elucidated by compositional and methylation analyses, specific chemical degradations, MALDI-TOF mass spectrometry, and (1)H NMR and (13)C NMR spectroscopy, including HMBC, TOCSY, HMQC, and NOESY experiments. Glycolipids G(2) and G(3) possess as backbone alpha-d-Glcp-(1 --> 3)-alpha-d-Glcp-(1 --> 1)-Gro (Gro, glycerol), in which position O-2 of the glycerol residue is acylated by a fatty acid (mainly C(15):0) while O-3 is substituted by an alkyl ether chain. In glycolipid G(3), an additional fatty acyl chain was linked to O-6 of the terminal glucose residue. Glycolipid G(4) was structurally related to G(2) but devoid of one glucose residue. Glycolipid G(1) was isolated in small amounts, and its structure was therefore deduced from MALDI-TOF-MS experiments alone, which revealed that it possessed the structure of G(2) but was lacking one fatty acid residue. In studies on the biological properties of P. propionicum glycolipids, the anti-P. propionicum rabbit antisera reacted in dot enzyme-immunoblotting test with G(2) and G(3). Glycolipid G(3) was able to induce the delayed type of hypersensitivity. The results indicated that these novel ether linkage-containing polar glycolipids are immunogenic and possibly active in hypersensitivity, and thus, in pathogenesis.  相似文献   
136.
Phosphorylated fructose-1,6-bisphosphatase (FBPase) was isolated from rabbit muscle in an SDS/PAGE homogeneous form. Its dephosphorylation with alkaline phosphatase revealed 2.8 moles of inorganic phosphate per mole of FBPase. The phosphorylated FBPase (P-FBPase) differs from the dephosphorylated enzyme in terms of its kinetic properties like K(m) and k(cat), which are two times higher for the phosphorylated FBPase, and in the affinity for aldolase, which is three times lower for the dephosphorylated enzyme. Dephosphorylated FBPase can be a substrate for protein kinase A and the amount of phosphate incorporated per FBPase monomer can reach 2-3 molecules. Since interaction of muscle aldolase with muscle FBPase results in desensitisation of the latter toward AMP inhibition (Rakus & Dzugaj, 2000, Biochem. Biophys. Res. Commun. 275, 611-616), phosphorylation may be considered as a way of muscle FBPase activity regulation.  相似文献   
137.
A simple protein model restricted to the face-centered cubic lattice has been studied. The model interaction scheme includes attractive interactions between hydrophobic (H) residues, repulsive interactions between hydrophobic and polar (P) residues, and orientation-dependent P-P interactions. Additionally, there is a potential that favors extended beta-type conformations. A sequence has been designed that adopts a native structure, consisting of an antiparallel, six-member Greek-key beta-barrel with protein-like structural degeneracy. It has been shown that the proposed model is a minimal one, i.e., all the above listed types of interactions are necessary for cooperative (all-or-none) type folding to the native state. Simulations were performed via the Replica Exchange Monte Carlo method and the numerical data analyzed via a multihistogram method.  相似文献   
138.
Reduced lattice models of proteins and Monte Carlo dynamics were used to simulate the initial stages of the unfolding of several proteins of various structural types, and the results were compared to experiment. The models semiquantitatively reproduce the approximate order of events of unfolding as well as subtle mutation effects and effects resulting from differences in sequences of similar folds. The short-time mobility of particular residues, observed in simulations, correlates with the crystallographic temperature factor. The main factor controlling unfolding is the native state topology, with sequence playing a less important role. The correlation with various experiments, especially for sequence-specific effects, strongly suggests that properly designed reduced models of proteins can be used for qualitative studies (or prediction) of protein unfolding pathways.  相似文献   
139.
3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) is a constituent of the inner core part of bacterial lipopolysaccharides (LPS). This sugar may contribute to biological activities of the LPS, the type of substitution of Kdo is thus of importance and this work is aimed at the evaluation of a method for monitoring the substitution of Kdo in LPS. The procedure consists of three steps, namely permethylation of the lipopolysaccharide, with iodomethane and sodium methylsulfinylmethanide or NaOH in Me(2)SO, or with methyl triflate, then the product is methanolysed with HCl in MeOH and acetylated with acetic anhydride in pyridine. The resulting partially methylated acetates of Kdo methyl glycosides were analyzed by gas-liquid chromatography-electron impact ionization mass spectrometry (GLC-MS). For several derivatives of Kdo, specific GLC retention times and MS fragmentation patterns were determined. Lipopolysaccharides from several bacterial strains were isolated and analyzed with three different methods of methylation. The complete solubilization of the LPS in the acid form allows diminishing possible undermethylation. Sodium methylsulfinylmethanide is the most efficient agent in the permethylation of the whole LPS, of all the tested procedures. Methylation with methyl triflate allows the detection of base labile substituents on Kdo residues.  相似文献   
140.
The objective of the studies was to analyse the process of oogenesis in vimba from a non-migratory population living in the waters of Drawieński National Park in north-west Poland. The character of spawning of this species is an obstacle in determining the right moment to catch spawners or developing artificial spawning biotechniques. Previtellogenesis of vimba begins about six months after hatching and lasts three years. The trophoplasmatic growth of oocytes (October-March/April) begins when carbohydrate vesicles appear near the nuclei oocytes of sexually mature females (aged 4+). Just before spawning, granulated, lipoprotein-like substances are cumulated. The resorption of pre-ovulation corpora lutea (non-ejected oocytes) and post-ovulation corpora lutea (ruptured theca folds and follicles) begins in the ovary of vimba in the middle of June. These were observed in histological cross sections for about two to three months. Describing the process of oogenesis can provide a foundation for developing practical applications in aquaculture aimed at preserving the biodiversity of the park's waters and this critically endangered species of the Polish ichthyofauna.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号