首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   27篇
  2023年   6篇
  2022年   14篇
  2021年   18篇
  2020年   18篇
  2019年   15篇
  2018年   20篇
  2017年   16篇
  2016年   30篇
  2015年   55篇
  2014年   44篇
  2013年   84篇
  2012年   72篇
  2011年   87篇
  2010年   57篇
  2009年   33篇
  2008年   32篇
  2007年   36篇
  2006年   29篇
  2005年   33篇
  2004年   26篇
  2003年   27篇
  2002年   23篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1964年   1篇
排序方式: 共有822条查询结果,搜索用时 15 毫秒
21.
Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation) may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.  相似文献   
22.

Purpose

A recent large genome-wide association study (GWAS) identified multiple variants associated with primary angle-closure glaucoma (PACG). The present study investigated the role of these variants in two cohorts with PACG recruited from Australia and Nepal.

Method

Patients with PACG and appropriate controls were recruited from eye clinics in Australia (n = 232 cases and n = 288 controls) and Nepal (n = 106 cases and 204 controls). Single nucleotide polymorphisms (SNPs) rs3753841 (COL11A1), rs1015213 (located between PCMTD1 and ST18), rs11024102 (PLEKHA7), and rs3788317 (TXNRD2) were selected and genotyped on the Sequenom. Analyses were conducted using PLINK and METAL.

Results

After adjustment for age and sex, SNP rs3753841 was found to be significantly associated with PACG in the Australian cohort (p = 0.017; OR = 1.34). SNPs rs1015213 (p = 0.014; OR 2.35) and rs11024102 (p = 0.039; OR 1.43) were significantly associated with the disease development in the Nepalese cohort. None of these SNPs survived Bonferroni correction (p = 0.05/4 = 0.013). However, in the combined analysis, of both cohorts, rs3753841 and rs1015213 showed significant association with p-values of 0.009 and 0.004, respectively both surviving Bonferroni correction. SNP rs11024102 showed suggestive association with PACG (p-value 0.035) and no association was found with rs3788317.

Conclusion

The present results support the initial GWAS findings, and confirm the SNP’s contribution to PACG. This is the first study to investigate these loci in both Australian Caucasian and Nepalese populations.  相似文献   
23.
IntroductionVaccinating a buffer of individuals around a case (ring vaccination) has the potential to target those who are at highest risk of infection, reducing the number of doses needed to control a disease. We explored the potential vaccine effectiveness (VE) of oral cholera vaccines (OCVs) for such a strategy.ConclusionsThese findings suggest that high-level protection can be achieved if individuals living close to cholera cases are living in a high coverage ring. Since this was an observational study including participants who had received two doses of vaccine (or placebo) in the clinical trial, further studies are needed to determine whether a ring vaccination strategy, in which vaccine is given quickly to those living close to a case, is feasible and effective.

Trial registration

ClinicalTrials.gov NCT00289224  相似文献   
24.
25.
Among hydrocarbon pollutants, diesel oil is a complex mixture of alkanes and aromatic compounds which are often encountered as soil contaminants leaking from storage tanks and pipelines or as result of accidental spillage. One of the best ecofriendly approaches is to restore contaminated soil by using microorganisms able to degrade those toxic compounds in a bioremediation process. In the present study, nineteen bacteria were isolated by enrichment culture technique from diesel spilled soil collected from electric generator shed of NBAIM, Mau. All the isolates were subjected to screening for lipase production and twelve isolates were found to be positive for lipase. When the isolates were screened for biosurfactant production using CTAB-methylene blue agar plates, only one isolate viz. 2NBDSH3 was found positive which was found to be phylogenetically closely related with Bacillus flexus. Despite having low emulsification index, the bacterium could degrade 88.6% of diesel oil in soil. Biosurfactant from the isolate was extracted and characterized through infra-red spectroscopy which indicated its possible lipopeptide nature which was further supported by strong absorption in UV range in the UV-Vis spectrum. The results of the present study indicated that the isolate either does not produce any bioemulsifier or produces very low amount of emulsifier rather it produces a lipopeptide biosurfactant which helps in degradation of diesel oil by lowering the surface tension. The bacterium thus isolated and characterized can serve as a promising solution for ecofriendly remediation of bacterium diesel contaminated soils.  相似文献   
26.
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.  相似文献   
27.
Introduction: Toxicoproteomics is an emerging area of omics, intended to explore the changes in protein expression and modifications in biological samples exposed to toxicants. The development of techniques that utilize sophisticated instruments in proteomics has facilitated the exploration of a wide-range of protein coverage and assisted the quantitative and qualitative evaluation of protein changes as a result of the toxic effects of toxic substances.

Areas covered: Studies on toxicoproteomics have an immense potential to explore the molecular mechanism of action of a variety of toxic substances through deciphering the proteomic map altered as a result of toxicant exposure. Here, we provide an overview of toxicoproteomic approaches and the current paradigm of toxicoproteomics.

Expert commentary: Research in this area continues to increase our understanding of the role of toxicants in worsening human health and toxicity driven diseases. The progress in toxicoproteomics may realize the development of novel biomarkers, drug targets and personalized medicines by incorporating the advanced proteomic applications in this field.  相似文献   

28.
29.
Krüppel‐like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2‐mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up‐regulation of KLF2 and concomitant down‐regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum‐induced arthritic inflammation and joint destruction in mice in a dose‐dependent manner. Finally, co‐immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2‐mediated regulation of K/BxN serum‐induced arthritic inflammation.  相似文献   
30.
Seminal amyloids are well known for their role in enhancing HIV infection. Among all the amyloidogenic peptides identified in human semen, PAP248‐286 was found to be the most active and was termed as semen‐derived enhancer of viral infection (SEVI). Although amyloidogenic nature of the peptide is mainly linked with enhancement of the viral infection, the most active physiological conformation of the aggregated peptide remains inconclusive. Lipids are known to modulate aggregation pathway of a variety of proteins and peptides and constitute one of the most abundant biomolecules in human semen. PAP248‐286 significantly differs from the other known amyloidogenic peptides, including Aβ and IAPP, in terms of critical concentration, surface charge, fibril morphology, and structural transition during aggregation. Hence, in the present study, we aimed to assess the effect of a lipid, 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC), on PAP248‐286 aggregation and the consequent conformational outcomes. Our initial observation suggested that the presence of the lipid considerably influenced the aggregation of PAP248‐286. Further, ZDOCK and MD simulation studies of peptide multimerization have suggested that the hydrophobic residues at C‐terminus are crucial for PAP248‐286 aggregation and are anticipated to be major DOPC‐interacting partners. Therefore, we further assessed the aggregation behaviour of C‐terminal (PAP273‐286) fragment of PAP248‐286 and observed that DOPC possesses the ability to interfere with the aggregation behaviour of both the peptides used in the current study. Mechanistically, we propose that the presence of DOPC causes considerable inhibition of the peptide aggregation by interfering with the peptide's disordered state to β‐sheet transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号