首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   26篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   10篇
  2019年   20篇
  2018年   6篇
  2017年   7篇
  2016年   10篇
  2015年   17篇
  2014年   23篇
  2013年   23篇
  2012年   27篇
  2011年   37篇
  2010年   28篇
  2009年   22篇
  2008年   25篇
  2007年   24篇
  2006年   13篇
  2005年   15篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有366条查询结果,搜索用时 328 毫秒
231.
232.
Arginine deiminase is a promising anticancer drug active against melanoma, hepatocarcinoma and other tumors. Recombinant strains of Escherichia coli that express arginine deiminase from pathogenic bacteria Mycoplasma have been developed. However, production costs of heterologous arginine deiminase are high due to use of an expensive inducer and extraction buffer, as well as using diluted culture for enzyme induction. We report on a new advanced protocol for Mycoplasma hominis arginine deiminase expression, extraction and renaturation. The main improvements include manipulation with dense suspensions of E. coli, use of lactose instead of isopropyl β-d-1-thiogalactopyranoside as an inducer and a cheaper but not less efficient buffer for solubilization of arginine deiminase inclusion bodies. In addition, supplementation of the storage culture medium with glucose and substrate (arginine) significantly stabilized the recombinant arginine deiminase producer. Homogenous preparations of recombinant arginine deiminase were obtained using anion-exchange and hydrophobic chromatography. The purified enzyme retained a specific activity of 30–34 U/mg for 12 months when stored at 4 °C in 20 mM sodium phosphate buffer pH 7.2 containing 1 M NaCl.  相似文献   
233.
234.
Two methods of multicopy integrant selection in the methylotrophic yeast Hansenula polymorpha based on the use of heterologous yeast auxotrophic genes have been used to isolate effective overproducers of hepatitis B surface antigen (HBsAg). One selection marker was described earlier for this yeast, the Saccharomyces cerevisiae URA3 gene, whereas the second selection marker was developed by us, the Pichia pastoris ADE1 gene with shortened native promoter. Sequential use of both selection markers produced stable transformants containing up to 30 integration cassettes with HBsAg gene. Deletion of PEX3 gene coding for peroxine involved in the early step of peroxisome formation substantially increased the production of HBsAg in glucose medium as compared to the parental strain. Maximal production of HBsAg in Δpex3 strain was nearly 8–9 % of the total cell protein.  相似文献   
235.
The rational modification of the actinomycetes genomes has a variety of applications in research, medicine, and biotechnology. The use of site-specific recombinases allows generation of multiple mutations, large DNA deletions, integrations, and inversions and may lead to significant progress in all of these fields. Despite their huge potential, site-specific recombinase-based technologies have primarily been used for simple marker removal from a chromosome. In this review, we summarise the site-specific recombination approaches for genome engineering in various actinomycetes.  相似文献   
236.
237.
The codA gene of Corynebacterium glutamicum PCM 1945 coding for a creatinine deiminase (CDI) (EC 3.5.4.21) has been amplified and cloned. The recombinant strain of Escherichia coli that overproduces the (His)6‐tagged inactive CDI of C. glutamicum as inclusion bodies has been constructed. After solubilization of inclusion bodies in the presence of 0.3% N‐lauroylsarcosine, the enzyme was renaturated and purified by a single‐step procedure using metal‐affinity chromatography. The yield of the (His)6‐tagged CDI is ~30 mg from 1 L culture. The purified enzyme is sufficiently stable under the conditions designed and possesses an activity of 10–20 U/mg. The main characteristics of the tagged enzyme remained similar to that of the natural enzyme.  相似文献   
238.
239.
Intracellular cadmium (Cd2+) ion accumulation and the ability to produce specific Cd2+ ion chelators was studied in the methylotrophic yeast Hansenula polymorpha. Only one type of Cd2+ intracellular chelators, glutathione (GSH), was identified, which suggests that sequestration of this heavy metal in H. polymorpha occurs similarly to that found in Saccharomyces cerevisiae, but different to Schizosaccharomys pombe and Candida glabrata which both synthesize phytochelatins. Cd2+ ion uptake in the H. polymorpha wild-type strains appeared to be an energy dependent process. It was found that Δgsh2 mutants, impaired in the first step of GSH biosynthesis, are characterized by increase in net Cd2+ ion uptake by the cells, whereas Δgsh1met1 and Δggt1 mutants impaired in sulfate assimilation and GSH catabolism, respectively, lost the ability to accumulate Cd2+ intracellularly. Apparently H. polymorpha, similarly to S. cerevisiae, forms a Cd-GSH complex in the cytoplasm, which in turn regulates Cd2+ uptake. Genes GSH1/MET1 and GGT1 are involved in maturation and metabolism of cellular Cd-GSH complex, respectively. Transport of [3H]N-ethylmaleimide-S-glutathione ([3H]NEM-SG) conjugate into crude membrane vesicules, purified from the wild-type cells of H. polymorpha appeared to be MgATP dependent, uncoupler insensitive and vanadate sensitive. We suggest that MgATP dependent transporter involved in Cd-GSH uptake in H. polymorpha, is similar to S. cerevisiae Ycf1-mediated vacuolar transporter responsible for accumulation of organic GS-conjugates and Cd-GSH complex.  相似文献   
240.
This review provides an overview of new technologies for DNA manipulations in actinomycetes exploiting recombinogenic engineering (Flp-FRT, Cre-loxP, Dre-rox, Tn5, GusA and I-SceI systems). We will describe some new vectors recently developed for engineering of complex phenotypes in actinomycetes. Several site-specific recombinases, transposons, reporter genes and I-SceI endonuclease have been utilized for genome manipulation in actinomycetes. Novel molecular tools will help to overcome many technical difficulties and will encourage new efforts to address the function of actinomycete genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号