首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   26篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   10篇
  2019年   20篇
  2018年   6篇
  2017年   7篇
  2016年   10篇
  2015年   17篇
  2014年   23篇
  2013年   23篇
  2012年   27篇
  2011年   37篇
  2010年   28篇
  2009年   22篇
  2008年   25篇
  2007年   24篇
  2006年   13篇
  2005年   15篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有366条查询结果,搜索用时 15 毫秒
211.
212.
A L-lactate-selective microbial biosensor was developed using permeabilized cells of gene-engineered thermotolerant methylotrophic yeast Hansenula polymorpha, over-producing L-lactate:cytochrome c-oxidoreductase (EC 1.1.2.3, flavocytochrome b(2), FC b(2)). The construction of FC b(2)-producers by over-expression of the gene CYB2 H. polymorpha encoding FC b(2) is described. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in the frame of a plasmid for multicopy integration was transformed to the recipient strain H. polymorpha C-105 (gcr1 catX) impaired in glucose repression and devoid of catalase activity. The permeabilized cells were either immobilized on the graphite working electrode by physical entrapment of the cell suspension by means of a dialysis membrane or by integration of the cells in an electrochemically generated layer using a cathodic electrodeposition polymer. Phenazine methosulphate was used as a free-diffusing redox mediator. It was assumed that the mediator reacts with mitochondrial FC b(2) after entering the cells in the presence of L-lactate. The biosensor based on recombinant yeast cells exhibited a higher K(M)(app) value and hence expanded linear range toward L-lactate as compared to a similar sensor based on the initial cells of H. polymorpha C-105.  相似文献   
213.
Genetic transformation of plants by Agrobacterium, which in nature causes neoplastic growths, represents the only known case of trans‐kingdom DNA transfer. Furthermore, under laboratory conditions, Agrobacterium can also transform a wide range of other eukaryotic species, from fungi to sea urchins to human cells. How can the Agrobacterium virulence machinery function in such a variety of evolutionarily distant and diverse species? The answer to this question lies in the ability of Agrobacterium to hijack fundamental cellular processes which are shared by most eukaryotic organisms. Our knowledge of these host cellular functions is critical for understanding the molecular mechanisms that underlie genetic transformation of eukaryotic cells. This review outlines the bacterial virulence machinery and provides a detailed discussion of seven major biological systems of the host cell–cell surface receptor arrays, cellular motors, nuclear import, chromatin targeting, targeted proteolysis, DNA repair, and plant immunity – thought to participate in the Agrobacterium‐mediated genetic transformation.  相似文献   
214.
Epigenetic methylation of cytosine residues in DNA is an essential element of genome maintenance and function in organisms ranging from bacteria to humans. DNA 5-cytosine methyltransferase enzymes (DCMTases) catalyze cytosine methylation via reaction intermediates in which the DNA is drastically remodeled, with the target cytosine residue extruded from the DNA helix and plunged into the active site pocket of the enzyme. We have determined a crystal structure of M.HaeIII DCMTase in complex with its DNA substrate at a previously unobserved state, prior to extrusion of the target cytosine and frameshifting of the DNA recognition sequence. The structure reveals that M.HaeIII selects the target cytosine and destabilizes its base-pairing through a precise, focused, and coordinated assault on the duplex DNA, which isolates the target cytosine from its nearest neighbors and thereby facilitates its extrusion from DNA.  相似文献   
215.
216.
Structures of seven CASP13 targets were determined using cryo-electron microscopy (cryo-EM) technique with resolution between 3.0 and 4.0 Å. We provide an overview of the experimentally derived structures and describe results of the numerical evaluation of the submitted models. The evaluation is carried out by comparing coordinates of models to those of reference structures (CASP-style evaluation), as well as checking goodness-of-fit of modeled structures to the cryo-EM density maps. The performance of contributing research groups in the CASP-style evaluation is measured in terms of backbone accuracy, all-atom local geometry and similarity of inter-subunit interfaces. The results on the cryo-EM targets are compared with those on the whole set of eighty CASP13 targets. A posteriori refinement of the best models in their corresponding cryo-EM density maps resulted in structures that are very close to the reference structure, including some regions with better fit to the density.  相似文献   
217.
Biofilm formation is a co-operative behaviour, where microbial cells become embedded in an extracellular matrix. This biomolecular matrix helps manifest the beneficial or detrimental outcome mediated by the collective of cells. Bacillus subtilis is an important bacterium for understanding the principles of biofilm formation. The protein components of the B. subtilis matrix include the secreted proteins BslA, which forms a hydrophobic coat over the biofilm, and TasA, which forms protease-resistant fibres needed for structuring. TapA is a secreted protein also needed for biofilm formation and helps in vivo TasA-fibre formation but is dispensable for in vitro TasA-fibre assembly. We show that TapA is subjected to proteolytic cleavage in the colony biofilm and that only the first 57 amino acids of the 253-amino acid protein are required for colony biofilm architecture. Through the construction of a strain which lacks all eight extracellular proteases, we show that proteolytic cleavage by these enzymes is not a prerequisite for TapA function. It remains unknown why TapA is synthesised at 253 amino acids when the first 57 are sufficient for colony biofilm structuring; the findings do not exclude the core conserved region of TapA having a second role beyond structuring the B. subtilis colony biofilm.  相似文献   
218.
Identification and characterization of mutations that drive cancer evolution constitute a major focus of cancer research. Consequently, dominant paradigms attribute the tumorigenic effects of carcinogens in general and ionizing radiation in particular to their direct mutagenic action on genetic loci encoding oncogenes and tumor suppressor genes. However, the effects of irradiation are not limited to genetic loci that encode oncogenes and tumor suppressors, as irradiation induces a multitude of other changes both in the cells and their microenvironment which could potentially affect the selective effects of some oncogenic mutations. P53 is a key tumor suppressor, the loss of which can provide resistance to multiple genotoxic stimuli, including irradiation. Given that p53 null animals develop T-cell lymphomas with high penetrance and that irradiation dramatically accelerates lymphoma development in p53 heterozygous mice, we hypothesized that increased selection for p53-deficient cells contributes to the causal link between irradiation and induction of lymphoid malignancies. We sought to determine whether ionizing irradiation selects for p53-deficient hematopoietic progenitors in vivo using mouse models. We found that p53 disruption does not provide a clear selective advantage within an unstressed hematopoietic system or in previously irradiated BM allowed to recover from irradiation. In contrast, upon irradiation p53 disruption confers a dramatic selective advantage, leading to long-term expansion of p53-deficient clones and to increased lymphoma development. Selection for cells with disrupted p53 appears to be attributable to several factors: protection from acute irradiation-induced ablation of progenitor cells, prevention of irradiation-induced loss of clonogenic capacity for stem and progenitor cells, improved long-term maintenance of progenitor cell fitness, and the disabling/elimination of competing p53 wild-type progenitors. These studies indicate that the carcinogenic effect of ionizing irradiation can in part be explained by increased selection for cells with p53 disruption, which protects progenitor cells both from immediate elimination and from long-term reductions in fitness following irradiation.  相似文献   
219.
Analysis of the α-lipomycin biosynthesis gene cluster of Streptomyces aureofaciens Tü117 led to the identification of five putative regulatory genes, which are congregated into a subcluster. Analysis of the lipReg1–4 and lipX1 showed that they encode components of two-component signal transduction systems (LipReg1 and LipReg2), multiple antibiotics resistance-type regulator (LipReg3), large ATP-binding regulators of the LuxR family-type regulator (LipReg4), and small ribonuclease (LipRegX1), respectively. A combination of targeted gene disruptions, complementation experiments, lipomycin production studies, and gene expression analysis via RT-PCR suggests that all regulatory lip genes are involved in α-lipomycin production. On the basis of the obtained data, we propose that LipReg2 controls the activity of LipReg1, which in its turn govern the expression of the α-lipomycin pathway-specific regulatory gene lipReg4. The ribonuclease gene lipX1 and the transporter regulator lipReg3 appear to work independently of genes lipReg1, lipReg2, and lipReg4.  相似文献   
220.
Actinomycetes are Gram-positive bacteria with a complex life cycle. They produce many pharmaceutically relevant secondary metabolites, including antibiotics and anticancer drugs. However, there is a limited number of biotechnological applications available as opposed to genetic model organisms like Bacillus subtilis or Escherichia coli. We report here a system for the functional expression of a synthetic gene encoding the I-SceI homing endonuclease in several streptomycetes. Using the synthetic sce(a) gene, we were able to create controlled genomic DNA double-strand breaks. A mutagenesis system, based on the homing endonuclease I-SceI, has been developed to construct targeted, non-polar, unmarked gene mutations in Streptomyces sp. Tü6071. In addition, we have shown that homologous recombination is a major pathway in streptomycetes to repair an I-SceI-generated DNA double-strand break. This novel I-SceI-based tool will be useful in fundamental studies on the repair mechanism of DNA double-strand breaks and for a variety of biotechnological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号