首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   26篇
  351篇
  2023年   2篇
  2022年   4篇
  2021年   11篇
  2020年   9篇
  2019年   20篇
  2018年   6篇
  2017年   8篇
  2016年   11篇
  2015年   17篇
  2014年   24篇
  2013年   22篇
  2012年   27篇
  2011年   38篇
  2010年   28篇
  2009年   22篇
  2008年   27篇
  2007年   22篇
  2006年   13篇
  2005年   15篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  1992年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有351条查询结果,搜索用时 12 毫秒
31.
32.
The changes in the partial molar volume (PMV) associated with the conformational transition of an alanine-rich peptide AK16 from the alpha-helix structure to various random coil structures are calculated by the three-dimensional interaction site model (3D-RISM) theory coupled with the Kirkwood-Buff theory. The volume change is analyzed by decomposing it into contributions from geometry and hydration: the changes in the van der Waals, void, thermal, and interaction volume. The total change in the PMV is positive. This is primarily due to the growth of void space within the peptide, which is canceled in part by the volume reduction resulting from the increase in the electrostatic interaction between the peptide and water molecules. The changes in the void and thermal volume of the coil structures are widely distributed and tend to compensate each other. Additionally, the relations between the hydration volume components and the surface properties are investigated. We categorize coil structures into extended coils with the PMV smaller than helix and general coils with the PMV larger than helix. The pressure therefore can both stabilize and destabilize the coil structures. The latter seems to be a more proper model of random coil structures of the peptide.  相似文献   
33.
Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.  相似文献   
34.
Human topoisomerase I-B (Top1) efficiently relaxes DNA supercoils during basic cellular processes, and can be transformed into a DNA-damaging agent by antitumour drugs, enzyme mutations and DNA lesions. Here, we describe Gal4-Top1 chimeric proteins (GalTop) with an N-terminal truncation of Top1, and mutations of the Gal4 Zn-cluster and/or Top1 domains that impair their respective DNA-binding activities. Expression levels of chimeras were similar in yeast cells, however, GalTop conferred an increased CPT sensitivity to RAD52- yeast cells as compared to a GalTop with mutations of the Gal4 domain, showing that a functional Gal4 domain can alter in vivo functions of Top1. In vitro enzyme activity was tested with a DNA relaxation assay using negatively supercoiled plasmids with 0 to 5 Gal4 consensus motifs. Only GalTop with a functional Gal4 domain could direct DNA relaxation activity of Top1 specifically to DNA molecules containing Gal4 motifs. By using a substrate competition assay, we could demonstrate that the Gal4-anchored Top1 remains functional and efficiently relax DNA substrates in cis. The enhanced CPT sensitivity of GalTop in yeast cells may then be due to alterations of the chromatin-binding activity of Top1. The GalTop chimeras may indeed mimic a normal mechanism by which Top1 is recruited to chromatin sites in living cells. Such hybrid Top1s may be helpful in further dissecting enzyme functions, and constitute a prototype of a site-specific DNA cutter endowed with high cell lethality.  相似文献   
35.
The innate immune system employs Toll-like receptors (TLRs) for the detection of invading microorganisms based on distinct molecular patterns. For example, TLR9 is activated by microbial DNA and also by short therapeutic CpG-containing oligonucleotides (CpG-ODN). TLR9 activation leads to the production of interferons and the priming of humoral adaptive immune responses. Unfortunately, the principles of ligand recognition by TLR9 are poorly understood, and genetic variants of TLR9, which may affect its function, have not been characterized systematically on the molecular level. We therefore sought to functionally characterize reported single nucleotide polymorphisms of TLR9 in the HEK293 model system. We discovered that two variants, P99L and M400I, are associated with altered receptor function regarding NF-κB activation and cytokine induction. Our investigations show that for the most functionally impaired variant, P99L, the ability to respond to physiological and therapeutic TLR9 ligands is severely compromised. However, CpG-ODN binding is normal. CpG-ODN recognition by TLR9 thus appears to involve two separate events, CpG-ODN binding and sensing. Our studies highlight Pro-99 as a residue important for the latter process. In genotyping studies, we confirmed that both M400I (rs41308230) and P99L (rs5743844) are relatively rare variants of TLR9. Our data add rs41308230 and rs5743844 to the list of functionally important TLR variants and warrant further research into their relevance for infectious disease susceptibility or responsiveness to CpG-ODN-based therapies.  相似文献   
36.
We have cloned the gene that encodes a novel glucosyl transferase (AraGT) involved in rhamnosylation of the polyketide antibiotic Aranciamycin in Streptomyces echinatus. AraGT comprises two domains characteristic of bacterial glycosyltranferases. AraGT was synthesized in E. coli as a decahistidinyl-tagged polypeptide. Purified AraGT is dimeric, displays a T(mapp) of 30 degrees C and can glycosylate the aglycone of an Aranciamycin derivative as shown by liquid chromatography and mass spectrometry. The availability of functional AraGT will allow the generation Aranciamycin-based combinatorial libraries.  相似文献   
37.
GGT1 gene of the methylotrophic yeast Hansenula polymorpha appears to be a structural and functional homologue of Saccharomyces cerevisiae CIS2/ECM38 gene encoding gamma-glutamyltranspeptidase (gammaGT). This is confirmed by the absence of the corresponding activity of gammaGT in the mutant with disrupted GGT1 gene. It was shown that gammaGT of both H. polymorpha and S. cerevisiae are involved in detoxification of electrophilic xenobiotics, as the corresponding mutants appeared to be defective in the disappearance of the fluorescent vacuolar complex of GSH with xenobiotic bimane and the further diffuse distribution of this complex in the cytosol. We hypothesize that metabolism of electrophilic xenobiotics in the yeasts H. polymorpha and S. cerevisiae occurs through a gammaGT-dependent mercapturic acid pathway of GSH-xenobiotic detoxification, similar to that known for mammalian cells, with cysteine-xenobiotics and/or N-acetylcysteine-xenobiotics as the end products.  相似文献   
38.

Introduction

The purpose of this study was to determine whether maraviroc, a human CC chemokine receptor 5 (CCR5) antagonist, is safe and effective in the treatment of active rheumatoid arthritis (RA) in patients on background methotrexate (MTX).

Methods

This phase IIa study comprised two distinct components: an open-label safety study of the pharmacokinetics (PK) of MTX in the presence of maraviroc, and a randomized, double-blind, placebo-controlled, proof-of-concept (POC) component. In the PK component, patients were randomized 1:1 to receive maraviroc 150 or 300 mg twice daily (BID) for four weeks. In the POC component, patients were randomized 2:1 to receive maraviroc 300 mg BID or placebo for 12 weeks. Patients were not eligible for inclusion in both components.

Results

Sixteen patients were treated in the safety/PK component. Maraviroc was well tolerated and there was no evidence of drug-drug interaction with MTX. One hundred ten patients were treated in the POC component. The study was terminated after the planned interim futility analysis due to lack of efficacy, at which time 59 patients (38 maraviroc; 21 placebo) had completed their week 12 visit. There was no significant difference in the number of ACR20 responders between the maraviroc (23.7%) and placebo (23.8%) groups (treatment difference -0.13%; 90% CI -20.45, 17.70; P = 0.504). The most common all-causality treatment-emergent adverse events in the maraviroc group were constipation (7.8%), nausea (5.2%), and fatigue (3.9%).

Conclusions

Maraviroc was generally well tolerated over 12 weeks; however, selective antagonism of CCR5 with maraviroc 300 mg BID failed to improve signs and symptoms in patients with active RA on background MTX.

Trial Registration

ClinicalTrials.gov: NCT00427934  相似文献   
39.
The filamentous fungus Penicillium chrysogenum is used for the industrial production of β-lactam antibiotics. The pathway for β-lactam biosynthesis has been resolved and involves the enzyme phenylacetic acid CoA ligase that is responsible for the CoA activation of the side chain precursor phenylacetic acid (PAA) that is used for the biosynthesis of penicillin G. To identify ABC transporters related to β-lactam biosynthesis, we analyzed the expression of all 48 ABC transporters present in the genome of P. chryso-genum when grown in the presence and absence of PAA. ABC40 is significantly upregulated when cells are grown or exposed to high levels of PAA. Although deletion of this transporter did not affect β-lactam biosynthesis, it resulted in a significant increase in sensitivity to PAA and other weak acids. It is concluded that ABC40 is involved in weak acid detoxification in P. chrysogenum including resistance to phenylacetic acid.  相似文献   
40.
We present a general-purpose model for biomolecular simulations at the molecular level that incorporates stochasticity, spatial dependence, and volume exclusion, using diffusing and reacting particles with physical dimensions. To validate the model, we first established the formal relationship between the microscopic model parameters (timestep, move length, and reaction probabilities) and the macroscopic coefficients for diffusion and reaction rate. We then compared simulation results with Smoluchowski theory for diffusion-limited irreversible reactions and the best available approximation for diffusion-influenced reversible reactions. To simulate the volumetric effects of a crowded intracellular environment, we created a virtual cytoplasm composed of a heterogeneous population of particles diffusing at rates appropriate to their size. The particle-size distribution was estimated from the relative abundance, mass, and stoichiometries of protein complexes using an experimentally derived proteome catalog from Escherichia coli K12. Simulated diffusion constants exhibited anomalous behavior as a function of time and crowding. Although significant, the volumetric impact of crowding on diffusion cannot fully account for retarded protein mobility in vivo, suggesting that other biophysical factors are at play. The simulated effect of crowding on barnase-barstar dimerization, an experimentally characterized example of a bimolecular association reaction, reveals a biphasic time course, indicating that crowding exerts different effects over different timescales. These observations illustrate that quantitative realism in biosimulation will depend to some extent on mesoscale phenomena that are not currently well understood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号