首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2597篇
  免费   230篇
  国内免费   1篇
  2023年   17篇
  2022年   29篇
  2021年   54篇
  2020年   45篇
  2019年   35篇
  2018年   69篇
  2017年   50篇
  2016年   75篇
  2015年   116篇
  2014年   124篇
  2013年   128篇
  2012年   177篇
  2011年   190篇
  2010年   104篇
  2009年   89篇
  2008年   137篇
  2007年   131篇
  2006年   137篇
  2005年   98篇
  2004年   96篇
  2003年   97篇
  2002年   84篇
  2001年   64篇
  2000年   55篇
  1999年   51篇
  1998年   32篇
  1997年   14篇
  1996年   26篇
  1995年   22篇
  1994年   20篇
  1993年   24篇
  1992年   41篇
  1991年   20篇
  1990年   30篇
  1989年   28篇
  1988年   20篇
  1987年   22篇
  1986年   22篇
  1985年   40篇
  1984年   15篇
  1982年   17篇
  1980年   19篇
  1979年   21篇
  1978年   16篇
  1977年   9篇
  1975年   9篇
  1974年   10篇
  1972年   10篇
  1971年   12篇
  1970年   10篇
排序方式: 共有2828条查询结果,搜索用时 31 毫秒
921.
Wickerhamomyces ciferrii secretes tetraacetyl phytosphingosine (TAPS), and in this study, the catalyzing acetyltransferases were identified using mass spectrometry-based proteomics. The proteome of wild-type strain NRRL Y-1031 served as control and was compared to the tetraacetyl phytosphingosine defective mating type NRRL Y-1031-27. Acetylation of phytosphingosine in W. ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p, encoded by genes similar to Saccharomyces cerevisiae YGR212W and YGR177C, respectively. Ablation of SLI1 resulted in an almost complete loss of tri- and tetraacetyl phytosphingosines, whereas the loss ATF2 resulted in an 15-fold increase in triacetyl phytosphingosine. Most likely, it is the concerted action of these two acetyltransferases that yields tetraacetyl phytosphingosine, in which Sli1p catalyzes initial O- and N-acetylation, producing triacetyl phytosphingosine. Finally, Atf2p catalyzes final O-acetylation to yield tetraacetyl phytosphingosine. The current study demonstrates that mass spectrometry-based proteomics can be employed to identify key steps in ill-explored metabolite biosynthesis pathways of nonconventional microorganisms. Furthermore, the identification of phytosphingosine as substrate for alcohol acetyltransferase Atf2p broadens the known substrate range of this enzyme. This interesting property of Atf2p may be exploited to enhance the secretion of heterologous compounds.  相似文献   
922.
Here we decipher the molecular determinants for the extreme toughness of spider silk fibers. Our bottom-up computational approach incorporates molecular dynamics and finite element simulations. Therefore, the approach allows the analysis of the internal strain distribution and load-carrying motifs in silk fibers on scales of both molecular and continuum mechanics. We thereby dissect the contributions from the nanoscale building blocks, the soft amorphous and the strong crystalline subunits, to silk fiber mechanics. We identify the amorphous subunits not only to give rise to high elasticity, but to also ensure efficient stress homogenization through the friction between entangled chains, which also allows the crystals to withstand stresses as high as 2 GPa in the context of the amorphous matrix. We show that the maximal toughness of silk is achieved at 10–40% crystallinity depending on the distribution of crystals in the fiber. We also determined a serial arrangement of the crystalline and amorphous subunits in lamellae to outperform a random or a parallel arrangement, putting forward what we believe to be a new structural model for silk and other semicrystalline materials. The multiscale approach, not requiring any empirical parameters, is applicable to other partially ordered polymeric systems. Hence, it is an efficient tool for the design of artificial silk fibers.  相似文献   
923.
To enable enzymatic coupling of saccharides to proteins, several di- and trisaccharides were hydroxy-arylated using anhydrous transesterification with methyl 3-(4-hydroxyphenyl)propionate, catalyzed by potassium carbonate. This transesterification resulted in the attachment of up to 3 hydroxy-aryl units per oligosaccharide molecule, with the monosubstituted product being by far the most abundant. The alkaline reaction conditions, however, resulted in a partial breakdown of reducing sugars. This breakdown could easily be bypassed by a preceding sugar reduction step converting them to polyols. Hydroxy-arylated products were purified by using solid phase extraction, based on the number of hydroxy-aryl moieties attached. Monohydroxy-arylated saccharose was subsequently linked to a tyrosine-containing tripeptide using horseradish peroxidase, as monitored by LC–MSn. This proof of principle for peptide and protein glycation with a range of possible saccharides and glycosidic polyols can lead to products with unique new properties.  相似文献   
924.
Down feathers are the first feather types that appear in both the phylogenetic and the ontogenetic history of birds. Although it is widely acknowledged that the primary function of downy elements is insulation, little is known about the interspecific variability in the structural morphology of these feathers, and the environmental factors that have influenced their evolution. Here, we collected samples of down and afterfeathers from 156 bird species and measured key morphological characters that define the insulatory properties of the downy layer. We then tested if habitat and climatic conditions could explain the observed between-species variation in down feather structure. We show that habitat has a very strong and clearly defined effect on down feather morphology. Feather size, barbule length and nodus density all decreased from terrestrial toward aquatic birds, with riparian species exhibiting intermediate characters. Wintering climate, expressed as windchill (a combined measure of the ambient temperature and wind speed) had limited effects on down morphology, colder climate only being associated with higher nodus density in dorsal down feathers. Overall, an aquatic lifestyle selects for a denser plumulaceous layer, while the effect of harsh wintering conditions on downy structures appear limited. These results provide key evidence of adaptations to habitat at the level of the downy layer, both on the scale of macro- and micro-elements of the plumage. Moreover, they reveal characters of convergent evolution in the avian plumage and mammalian fur, that match the varying needs of insulation in terrestrial and aquatic modes of life.  相似文献   
925.
926.
Arctic ecosystems are changing rapidly in response to climate warming. While Arctic mammals are highly evolved to these extreme environments, particularly with respect to their stress axis, some species may have limited capacity to adapt to this change. We examined changes in key components of the stress axis (cortisol and its carrier protein—corticosteroid binding globulin [CBG]) in polar bears (Ursus maritimus) from western Hudson Bay (N = 300) over a 33 year period (1983–2015) during which time the ice‐free period was increasing. Changing sea ice phenology limits spring hunting opportunities and extends the period of onshore fasting. We assessed the response of polar bears to a standardized stressor (helicopter pursuit, darting, and immobilization) during their onshore fasting period (late summer–autumn) and quantified the serum levels of the maximum corticosteroid binding capacity (MCBC) of CBG, the serum protein that binds cortisol strongly, and free cortisol (FC). We quantified bear condition (age, sex, female with cubs or not, fat condition), sea ice (breakup in spring–summer, 1 year lagged freeze‐up in autumn), and duration of fasting until sample collection as well as cumulative impacts of the latter environmental traits from the previous year. Data were separated into “good” years (1983–1990) when conditions were thought to be optimal and “poor” years (1991–2015) when sea ice conditions deteriorated and fasting on land was extended. MCBC explained 39.4% of the variation in the good years, but only 28.1% in the poor ones, using both biological and environmental variables. MCBC levels decreased with age. Changes in FC were complex, but more poorly explained. Counterintuitively, MCBC levels increased with increased time onshore, 1 year lag effects, and in poor ice years. We conclude that MCBC is a biomarker of stress in polar bears and that the changes we document are a consequence of climate warming.  相似文献   
927.
928.
Plasmonics - We studied the evolution of femtosecond breakdown in lithographically produced plasmonic nanoparticles with increasing laser intensity. Localized plasmons were generated with 40-fs...  相似文献   
929.
Background

Cardiac rehabilitation (CR) has favourable effects on cardiovascular mortality and morbidity. Therefore, it might reasonable to expect that incomplete CR participation will result in suboptimal patient outcomes.

Methods

We studied the 914 post-acute coronary syndrome patients who participated in the OPTImal CArdiac REhabilitation (OPTICARE) trial. They all started a ‘standard’ CR programme, with physical exercises (group sessions) twice a week for 12 weeks. Incomplete CR was defined as participation in <75% of the scheduled exercise sessions. Patients were followed-up for 2.7 years, and the incidence of cardiac events was recorded. Major adverse cardiac events (MACE) included all-cause mortality, non-fatal myocardial infarction and coronary revascularisation.

Results

A total of 142 (16%) patients had incomplete CR. They had a higher incidence of MACE than their counterparts who completed CR (11.3% versus 3.8%, adjusted hazard ratio [aHR] 2.86 and 95% confidence interval [CI] 1.47–5.26). Furthermore, the incidence of any cardiac event, including MACE and coronary revascularisation, was higher (20.4% versus 11.0%, aHR 1.54; 95% CI 0.98–2.44). Patients with incomplete CR were more often persistent smokers than those who completed CR (31.7% versus 11.5%), but clinical characteristics were similar otherwise.

Conclusion

Post-ACS patients who did not complete a ‘standard’ 12-week CR programme had a higher incidence of adverse cardiac events during long-term follow-up than those who completed the programme. Since CR is proven beneficial, further research is needed to understand the reasons why patients terminate prematurely.

  相似文献   
930.

Background

Mitochondrial impairment has been implicated in the pathogenesis of Huntington’s disease (HD). However, how mutant huntingtin impairs mitochondrial function and thus contributes to HD has not been fully elucidated. In this study, we used striatal cells expressing wild type (STHdhQ7/Q7) or mutant (STHdhQ111/Q111) huntingtin protein, and cortical neurons expressing the exon 1 of the huntingtin protein with physiological or pathological polyglutamine domains, to examine the interrelationship among specific mitochondrial functions.

Results

Depolarization induced by KCl resulted in similar changes in calcium levels without compromising mitochondrial function, both in wild type and mutant cells. However, treatment of mutant cells with thapsigargin (a SERCA antagonist that raises cytosolic calcium levels), resulted in a pronounced decrease in mitochondrial calcium uptake, increased production of reactive oxygen species (ROS), mitochondrial depolarization and fragmentation, and cell viability loss. The mitochondrial dysfunction in mutant cells was also observed in cortical neurons expressing exon 1 of the huntingtin protein with 104 Gln residues (Q104-GFP) when they were exposed to calcium stress. In addition, calcium overload induced opening of the mitochondrial permeability transition pore (mPTP) in mutant striatal cells. The mitochondrial impairment observed in mutant cells and cortical neurons expressing Q104-GFP was prevented by pre-treatment with cyclosporine A (CsA) but not by FK506 (an inhibitor of calcineurin), indicating a potential role for mPTP opening in the mitochondrial dysfunction induced by calcium stress in mutant huntingtin cells.

Conclusions

Expression of mutant huntingtin alters mitochondrial and cell viability through mPTP opening in striatal cells and cortical neurons.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号