首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1948篇
  免费   141篇
  国内免费   7篇
  2096篇
  2024年   4篇
  2023年   9篇
  2022年   35篇
  2021年   72篇
  2020年   37篇
  2019年   52篇
  2018年   63篇
  2017年   64篇
  2016年   67篇
  2015年   99篇
  2014年   106篇
  2013年   109篇
  2012年   146篇
  2011年   165篇
  2010年   101篇
  2009年   89篇
  2008年   108篇
  2007年   128篇
  2006年   122篇
  2005年   107篇
  2004年   111篇
  2003年   92篇
  2002年   77篇
  2001年   13篇
  2000年   5篇
  1999年   8篇
  1998年   13篇
  1997年   9篇
  1996年   11篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1968年   1篇
排序方式: 共有2096条查询结果,搜索用时 11 毫秒
151.
152.
The composition and distribution of the main unicellular eukaryotic groups (diatom algae, ciliates, dinoflagellates (DF), other phototrophic (PF) and heterotrophic flagellates (HF)) were investigated in sandy sediments at five stations allocated across the tidal sheltered beach of the White Sea. Overall, 75 diatoms, 98 ciliates, 16 DF, 3 PF and 34 HF species were identified; some are new records for the White Sea. Common species for each group are illustrated. Diatoms and ciliates showed high alpha-diversity (species richness per sample), whereas flagellates were characterized by high beta-diversity (species turnover across the intertidal flat). Each group demonstrated its own spatial pattern that was best matched with its own subset of abiotic variables, reflecting group-specific responses to environmental gradients. Species richness increased from the upper intertidal zone seaward for ciliates but decreased for HF, whereas autotrophs showed a relatively uniform pattern with a slight peak at the mid-intertidal zone. Across the littoral zone, all groups showed distinct compositional changes; however, the position of the boundary between “upper” and “lower” intertidal communities varied among groups. Most of the species found at Ryazhkov Island are known from many other regions worldwide, indicating a wide geographic distribution of microbial eukaryotic species.  相似文献   
153.
The chemistry of ubiquinone allows reversible addition of single electrons and protons. This unique property is used in nature for aerobic energy gain, for unilateral proton accumulation, for the generation of reactive oxygen species involved in physiological signaling and a variety of pathophysiological events. Since several years ubiquinone is also considered to play a major role in the control of lipid peroxidation, since this lipophilic biomolecule was recognized to recycle alpha-tocopherol radicals back to the chain-breaking form, vitamin E. Ubiquinone is therefore a biomolecule which has increasingly focused the interest of many research groups due to its alternative pro- and antioxidant activity. We have intensively investigated the role of ubiquinone as prooxidant in mitochondria and will present experimental evidences on conditions required for this function, we will also show that lysosomal ubiquinone has a double function as proton translocator and radical source under certain metabolic conditions. Furthermore, we have addressed the antioxidant role of ubiquinone and found that the efficiency of this activity is widely dependent on the type of biomembrane where ubiquinone exerts its chain-breaking activity.  相似文献   
154.
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.  相似文献   
155.
The procedure for the isolation of the highly active fraction of sarcoplasmic reticulum from pigeon and dog hearts is described. The method is based on the partial loading of heart microsomes with calcium and oxalate ions and the precipitation of loaded vesicles in sucrose and potassium chloride concentration gradients. Preparations obtained possess high activity of Ca2+-dependent ATPase and are also able to accumulate up to 10 mumol Ca2+ per mg protein. Purification of sarcoplasmic reticulum membranes is accompanied by a decrease in concentration of cytochrome a+a3 and an increase in the content of [32P]phosphoenzyme. The basic components in "calcium-oxalate preparation" from hearts are proteins with molecular weights of about 100000 (Ca2+-dependent ATPase) and 55000 Calcium-oxalate preparation from pigeon hearts was used for subsequent purification of Ca2+-dependent ATPase. Specific activity of purified enzyme from pigeon hearts is 12-16 mumol Pi/min per mg protein. Enzyme activity of purified Ca2+-dependent ATPase is inhibited by EGTA and is not sensitive to azide, 2,4-dinitrophenol and ouabain. The data obtained demonstrate the similarity of calcium pump systems and Ca2+-dependent ATPases isolated from heart and skeletal muscles.  相似文献   
156.
In addition to their natural substrates GDP and GTP, the bacterial translational GTPases initiation factor (IF) 2 and elongation factor G (EF-G) interact with the alarmone molecule guanosine tetraphosphate (ppGpp), which leads to GTPase inhibition. We have used isothermal titration calorimetry to determine the affinities of ppGpp for IF2 and EF-G at a temperature interval of 5-25 °C. We find that ppGpp has a higher affinity for IF2 than for EF-G (1.7-2.8 μM Kdversus 9.1-13.9 μM Kd at 10-25 °C), suggesting that during stringent response in vivo, IF2 is more responsive to ppGpp than to EF-G. We investigated the effects of ppGpp, GDP, and GTP on IF2 interactions with fMet-tRNAfMet demonstrating that IF2 binds to initiator tRNA with submicromolar Kd and that affinity is altered by the G nucleotides only slightly. This—in conjunction with earlier reports on IF2 interactions with fMet-tRNAfMet in the context of the 30S initiation complex, where ppGpp was suggested to strongly inhibit fMet-tRNAfMet binding and GTP was suggested to strongly promote fMet-tRNAfMet binding—sheds new light on the mechanisms of the G-nucleotide-regulated fMet-tRNAfMet selection.  相似文献   
157.
158.
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.  相似文献   
159.
160.
Cellular identity in both normal and disease processes is determined by programmed epigenetic activation or silencing of specific gene subsets. Here, we have used human cells harboring epigenetically silent GFP-reporter genes to perform a genome-wide siRNA knockdown screen for the identification of cellular factors that are required to maintain epigenetic gene silencing. This unbiased screen interrogated 21,121 genes, and we identified and validated a set of 128 protein factors. This set showed enrichment for functional categories, and protein-protein interactions. Among this set were known epigenetic silencing factors, factors with no previously identified role in epigenetic gene silencing, as well as unstudied factors. The set included non-nuclear factors, for example, components of the integrin-adhesome. A key finding was that the E1 and E2 enzymes of the small ubiquitin-like modifier (SUMO) pathway (SAE1, SAE2/UBA2, UBC9/UBE2I) are essential for maintenance of epigenetic silencing. This work provides the first genome-wide functional view of human factors that mediate epigenetic gene silencing. The screen output identifies novel epigenetic factors, networks, and mechanisms, and provides a set of candidate targets for epigenetic therapy and cellular reprogramming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号