首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1810篇
  免费   130篇
  国内免费   7篇
  1947篇
  2024年   4篇
  2023年   8篇
  2022年   35篇
  2021年   68篇
  2020年   32篇
  2019年   50篇
  2018年   54篇
  2017年   54篇
  2016年   62篇
  2015年   95篇
  2014年   99篇
  2013年   104篇
  2012年   137篇
  2011年   152篇
  2010年   89篇
  2009年   85篇
  2008年   103篇
  2007年   120篇
  2006年   119篇
  2005年   103篇
  2004年   107篇
  2003年   93篇
  2002年   75篇
  2001年   13篇
  2000年   2篇
  1999年   5篇
  1998年   12篇
  1997年   9篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   5篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1979年   5篇
排序方式: 共有1947条查询结果,搜索用时 15 毫秒
51.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   
52.
Integration of the DNA copy of the genomic RNA into an infected cell genome is one of the key steps of the replication cycle of all retroviruses. It is catalyzed by the viral enzyme, integrase. We have shown that conjugates of short single-stranded oligonucleotides with eosin efficiently inhibit the catalytic activity of the HIV-1 integrase. In this article, we have found that the dependence of the integrase catalytic activity on the concentration of oligonucleotides has a bell-shaped pattern. The modulation of HIV-1 integrase activity correlated with the oligonucleotide length and was not associated with specific sequences. Moreover, a similar mode of the oligonucleotide action was found for integrase from the prototype foamy virus. This dual effect of the oligonucleotide and their conjugates with eosin might be explained by their binding with retroviral integrase in two different sites; the oligodeoxynucleotide binding in the first site results in integrase activation, whereas interactions with another one lead to inhibition of the enzyme activity. Eosin coupling to oligonucleotides did not change the mode of their action but enhanced their affinity to both binding sites. The affinity increase was found to be much more important for the site responsible for the integrase inhibition, thus explaining the high inhibitory potency of oligonucleotide-eosin conjugates.  相似文献   
53.
The crystal structure of HI0074 from Haemophilus influenzae, a protein of unknown function, has been determined at a resolution of 2.4 A. The molecules form an up-down, four-helix bundle, and associate into homodimers. The fold is most closely related to the substrate-binding domain of KNTase, yet the amino acid sequences of the two proteins exhibit no significant homology. Sequence analyses of completely and incompletely sequenced genomes reveal that the two adjacent genes, HI0074 and HI0073, and their close relatives comprise a new family of nucleotidyltransferases, with 15 members at the time of writing. The analyses also indicate that this is one of eight families of a large nucleotidyltransferase superfamily, whose members were identified based on the proximity of the nucleotide- and substrate-binding domains on the respective genomes. Both HI0073 and HI0074 were annotated "hypothetical" in the original genome sequencing publication. HI0073 was cloned, expressed, and purified, and was shown to form a complex with HI0074 by polyacrylamide gel electrophoresis under nondenaturing conditions, analytic size exclusion chromatography, and dynamic light scattering. Double- and single-stranded DNA binding assays showed no evidence of DNA binding to HI0074 or to HI0073/HI0074 complex despite the suggestive shape of the putative binding cleft formed by the HI0074 dimer.  相似文献   
54.
Our previous studies demonstrated the formation of structurally diverse DNA-containing microparticles (DNA MPs) in PCR with Mg-pyrophosphate (MgPPi) as the structure-forming component. These DNA MPs were referred to major structural types: microdisks (2D MPs) with nanometer thickness and 3D MPs with sophisticated morphology and constructed from intersecting disks and their segments. Little is known about factors that influence both the morphology and size of DNA MPs, and the present study was aimed at fulfilling this gap. We showed that the addition of Mn2+ cations to PCR mixtures caused the profound changes in MPs morphology, depending on DNA polymerase used (KlenTaq or Taq). Asymmetric PCR with 20-fold decrease in the concentration of one of two primers facilitated the predominant formation of microdisks with unusual structure. The addition of 1 mM Na-pyrophosphate to PCR mixtures with synthesized DNA and subsequent thermal cycling (10–15 cycles) were optimal to produce microdisks or nanometer 3D particles. Using electron microscopy, we studied also the structure of inorganic micro- and nanoparticles from MgPPi, formed during multiple heating and cooling cycles of a mixture of Mg2+ and Na-pyrophosphate in various regimes. Also, we found the conditions to yield planar (Mg·Mn)PPi nanocrystals (diameter ~100 nm and thickness ~10 nm) which efficiently adsorbed exogenous DNA. These inorganic nanoparticles are promising for DNA delivery in transfection studies. Mechanisms to be involved in structural modifications of MPs and perspectives of their practical application are discussed.  相似文献   
55.
56.
Atopic dermatitis (AD) is a widespread and difficult to treat allergic skin disease and is a tough challenge for healthcare. In this study, we investigated whether allergen-specific immunotherapy (ASIT) with a monomeric allergoid obtained by succinylation of ovalbumin (sOVA) is effective in a mouse model of atopic dermatitis. An experimental model of AD was reproduced by epicutaneous sensitization with ovalbumin (OVA). ASIT was performed with subcutaneous (SC) administration of increasing doses of OVA or sOVA. The levels of anti-OVA antibodies, as well as cytokines, were detected by ELISA. Skin samples from patch areas were taken for histologic examination. ASIT with either OVA or sOVA resulted in a reduction of both the anti-OVA IgE level and the IgG1/IgG2a ratio. Moreover, ASIT with sOVA increased the IFN-γ level in supernatants after splenocyte stimulation with OVA. Histologic analysis of skin samples from the sites of allergen application showed that ASIT improved the histologic picture by decreasing allergic inflammation in comparison with untreated mice. These data suggest that ASIT with a succinylated allergen represents promising approach for the treatment of AD.  相似文献   
57.
Apart from acetyl-choline (Ach), adenosine-5′-trisphosphate (ATP) is thought to play a role in neuromuscular function, however little information is available on its cellular physiology. As such, effects of ATP and adenosine on contractility of mice diaphragmatic and skeletal muscles (m. extensor digitorum longa—MEDL) have been investigated in in vitro experiments. Application of carbacholine (CCh) in vitro in different concentrations led to pronounced muscle contractions, varying from 9.15 ± 4.76 to 513.13 ± 15.4 mg and from 44.65 ± 5.01 to 101.46 ± 9.11 mg for diaphragm and MEDL, respectively. Two hundred micromolars of CCh in both muscles caused the contraction with the 65% (diaphragm) to 75% (MEDL) of maximal contraction force—this concentration was thus used in further experiments. It was found that application of ATP (100 μM) increased the force of diaphragmatic contraction caused by CCh (200 μM) from 335.2 ± 51.4 mg (n = 21) in controls to 426.5 ± 47.8 mg (n = 10; P < 0.05), but decreased the contractions of MEDL of CCh from 76.6 ± 6.5 mg (n = 26) in control to 40.2 ± 9.0 mg (n = 8; P < 0.05). Application of adenosine (100 μM) had no effect on CCh-induced contractions of these muscles.

Resting membrane potential (MP) measurements using sharp electrodes were done at 10, 20 and 30 min after the application of ATP and adenosine. Diaphragm showed depolarization from 75 ± 0.6 down to 63.2 ± 1.05, 57.2 ± 0.96 and 53.6 ± 1.1 mV after 10, 20 and 30 min of exposition, respectively (20 fibers from 4 muscles each, P < 0.05 in all three cases). Adenosine showed no effect on diaphragmatic MP. Both agents were ineffective in case of MEDL.

The effects of ATP in both tissues were abolished by suramin (100 μM), a P2-receptor antagonist, and chelerythrin (50 μM), a specific protein-kinase C (PKC) inhibitor, but were not affected by 1H-[1,2,4]-oxadiazolo-[4,3-]-quinoxalin-1-one (ODQ, 1 μM), a guanylyl-cyclase inhibitor, or by adenosine-3,5-monophosphothioate (Rp-cAMP, 1 μM), a protein-kinase A (PKA) inhibitor.

Besides the action on contractile activity, ATP (100 μM) led to a significant (P < 0.001) depolarization of diaphragm muscle fibers from 74.5 ± 2.3 down to 64 ± 2.1, 58.2 ± 2.2 and 54.3 ± 2.4 mV after 10, 20 and 30 min of incubation, respectively. Incubation of MEDL with the same ATP concentration showed no significant change of MP.

Denervation of the muscles for 28 days led to a decrease of CCh-induced contractions of diaphragm down to 171.1 ± 34.5 mg (n = 11, P < 0.05), but increased the contractile force of MEDL up to 723.9 ± 82.3 mg (n = 9, P < 0.01). Application of ATP elevated the contractility of denervated diaphragm caused by CCh up to normal values (311.1 ± 79.7 mg, n = 6, P > 0.05 versus control), but did not significantly affect of contractility of MEDL, which became 848.1 ± 62.7 mg (n = 6).

These results show that the effects of ATP on both diaphragmatic and skeletal muscles are mediated through P2Y receptors coupled to chelerytrin-sensitive protein-kinase C.  相似文献   

58.
Antiamoebin I (Aam-I) is a membrane-active peptaibol antibiotic isolated from fungal species belonging to the genera Cephalosporium, Emericellopsis, Gliocladium, and Stilbella. Antiamoebin I has the amino acid sequence: Ac-Phe(1)-Aib-Aib-Aib-Iva-Gly-Leu-Aib(8)-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl(16). By using the uniformly (13)C,(15)N-labeled sample of Aam-I, the set of conformationally dependent J couplings and (3h)J(NC) couplings through H-bonds were measured. Analysis of these data along with the data on magnetic nonequivalence of the (13)C(beta) nuclei (Deltadelta((13)C(beta))) in Aib and Iva residues allowed us to draw the univocal conclusion that the N-terminal part (Phe(1)-Gly(6)) of Aam-I in MeOH solution is in fast exchange between the right-handed and left-handed 3(10)-helical conformations, with an approximately equal population of both states. An additional conformational exchange process was found at the Aib(8) residue. The (15)N-NMR-relaxation and CD-spectroscopy measurements confirmed these findings. Molecular modeling and Monte Carlo simulations revealed that both exchange processes are correlated and coupled with significant hinge-bending motions around the Aib(8) residue. Our results explain relatively low activity of Aam-I with respect to other 15-amino acid residue peptaibols (for example, zervamicin) in functional and biological tests. The high dynamic 'propensity' possibly prevents both initial binding of the antiamoebin to the membrane and subsequent formation of stable ionic channels according to the barrel-stave mechanism.  相似文献   
59.
A direct modeling approach was used to quantitatively interpret the two-dimensional x-ray diffraction patterns obtained from contracting mammalian skeletal muscle. The dependence of the calculated layer line intensities on the number of myosin heads bound to the thin filaments, on the conformation of these heads and on their mode of attachment to actin, was studied systematically. Results of modeling are compared to experimental data collected from permeabilized fibers from rabbit skeletal muscle contracting at 5°C and 30°C and developing low and high isometric tension, respectively. The results of the modeling show that: i), the intensity of the first actin layer line is independent of the tilt of the light chain domains of myosin heads and can be used as a measure of the fraction of myosin heads stereospecifically attached to actin; ii), during isometric contraction at near physiological temperature, the fraction of these heads is ∼40% and the light chain domains of the majority of them are more perpendicular to the filament axis than in rigor; and iii), at low temperature, when isometric tension is low, a majority of the attached myosin heads are bound to actin nonstereospecifically whereas at high temperature and tension they are bound stereospecifically.  相似文献   
60.
Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.Methods for genome editing in plant cells have fallen behind the remarkable progress made in whole-genome sequencing projects. The availability of reliable and efficient methods for genome editing would foster gene discovery and functional gene analyses in model plants and the introduction of novel traits in agriculturally important species (Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009). Genome editing in various species is typically achieved by integrating foreign DNA molecules into the target genome by homologous recombination (HR). Genome editing by HR is routine in yeast (Saccharomyces cerevisiae) cells (Scherer and Davis, 1979) and has been adapted for other species, including Drosophila, human cell lines, various fungal species, and mouse embryonic stem cells (Baribault and Kemler, 1989; Venken and Bellen, 2005; Porteus, 2007; Hall et al., 2009; Laible and Alonso-González, 2009; Tenzen et al., 2009). In plants, however, foreign DNA molecules, which are typically delivered by direct gene-transfer methods (e.g. Agrobacterium and microbombardment of plasmid DNA), often integrate into the target cell genome via nonhomologous end joining (NHEJ) and not HR (Ray and Langer, 2002; Britt and May, 2003).Various methods have been developed to indentify and select for rare site-specific foreign DNA integration events or to enhance the rate of HR-mediated DNA integration in plant cells. Novel T-DNA molecules designed to support strong positive- and negative-selection schemes (e.g. Thykjaer et al., 1997; Terada et al., 2002), altering the plant DNA-repair machinery by expressing yeast chromatin remodeling protein (Shaked et al., 2005), and PCR screening of large numbers of transgenic plants (Kempin et al., 1997; Hanin et al., 2001) are just a few of the experimental approaches used to achieve HR-mediated gene targeting in plant species. While successful, these approaches, and others, have resulted in only a limited number of reports describing the successful implementation of HR-mediated gene targeting of native and transgenic sequences in plant cells (for review, see Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009; Weinthal et al., 2010).HR-mediated gene targeting can potentially be enhanced by the induction of genomic double-strand breaks (DSBs). In their pioneering studies, Puchta et al. (1993, 1996) showed that DSB induction by the naturally occurring rare-cutting restriction enzyme I-SceI leads to enhanced HR-mediated DNA repair in plants. Expression of I-SceI and another rare-cutting restriction enzyme (I-CeuI) also led to efficient NHEJ-mediated site-specific mutagenesis and integration of foreign DNA molecules in plants (Salomon and Puchta, 1998; Chilton and Que, 2003; Tzfira et al., 2003). Naturally occurring rare-cutting restriction enzymes thus hold great promise as a tool for genome editing in plant cells (Carroll, 2004; Pâques and Duchateau, 2007). However, their wide application is hindered by the tedious and next to impossible reengineering of such enzymes for novel DNA-target specificities (Pâques and Duchateau, 2007).A viable alternative to the use of rare-cutting restriction enzymes is the zinc finger nucleases (ZFNs), which have been used for genome editing in a wide range of eukaryotic species, including plants (e.g. Bibikova et al., 2001; Porteus and Baltimore, 2003; Lloyd et al., 2005; Urnov et al., 2005; Wright et al., 2005; Beumer et al., 2006; Moehle et al., 2007; Santiago et al., 2008; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). Here too, ZFNs have been used to enhance DNA integration via HR (e.g. Shukla et al., 2009; Townsend et al., 2009) and as an efficient tool for the induction of site-specific mutagenesis (e.g. Lloyd et al., 2005; Zhang et al., 2010) in plant species. The latter is more efficient and simpler to implement in plants as it does not require codelivery of both ZFN-expressing and donor DNA molecules and it relies on NHEJ—the dominant DNA-repair machinery in most plant species (Ray and Langer, 2002; Britt and May, 2003).ZFNs are artificial restriction enzymes composed of a fusion between an artificial Cys2His2 zinc-finger protein DNA-binding domain and the cleavage domain of the FokI endonuclease. The DNA-binding domain of ZFNs can be engineered to recognize a variety of DNA sequences (for review, see Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). The FokI endonuclease domain functions as a dimer, and digestion of the target DNA requires proper alignment of two ZFN monomers at the target site (Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). Efficient and coordinated expression of both monomers is thus required for the production of DSBs in living cells. Transient ZFN expression, by direct gene delivery, is the method of choice for targeted mutagenesis in human and animal cells (e.g. Urnov et al., 2005; Beumer et al., 2006; Meng et al., 2008). Among the different methods used for high and efficient transient ZFN delivery in animal and human cell lines are plasmid injection (Morton et al., 2006; Foley et al., 2009), direct plasmid transfer (Urnov et al., 2005), the use of integrase-defective lentiviral vectors (Lombardo et al., 2007), and mRNA injection (Takasu et al., 2010).In plant species, however, efficient and strong gene expression is often achieved by stable gene transformation. Both transient and stable ZFN expression have been used in gene-targeting experiments in plants (Lloyd et al., 2005; Wright et al., 2005; Maeder et al., 2008; Cai et al., 2009; de Pater et al., 2009; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). In all cases, direct gene-transformation methods, using polyethylene glycol, silicon carbide whiskers, or Agrobacterium, were deployed. Thus, while mutant plants and tissues could be recovered, potentially without any detectable traces of foreign DNA, such plants were generated using a transgenic approach and are therefore still likely to be classified as transgenic. Furthermore, the recovery of mutants in many cases is also dependent on the ability to regenerate plants from protoplasts, a procedure that has only been successfully applied in a limited number of plant species. Therefore, while ZFN technology is a powerful tool for site-specific mutagenesis, its wider implementation for plant improvement may be somewhat limited, both by its restriction to certain plant species and by legislative restrictions imposed on transgenic plants.Here we describe an alternative to direct gene transfer for ZFN delivery and for the production of mutated plants. Our approach is based on the use of a novel Tobacco rattle virus (TRV)-based expression system, which is capable of systemically infecting its host and spreading into a variety of tissues and cells of intact plants, including developing buds and regenerating tissues. We traced the indirect ZFN delivery in infected plants by activation of a mutated reporter gene and we demonstrate that this approach can be used to recover mutated plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号