首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1635295篇
  免费   153792篇
  国内免费   1749篇
  1790836篇
  2021年   18383篇
  2019年   16332篇
  2018年   19296篇
  2017年   18102篇
  2016年   29407篇
  2015年   43454篇
  2014年   51552篇
  2013年   77830篇
  2012年   48130篇
  2011年   39383篇
  2010年   47483篇
  2009年   47531篇
  2008年   35903篇
  2007年   34609篇
  2006年   37818篇
  2005年   38623篇
  2004年   37804篇
  2003年   35007篇
  2002年   32823篇
  2001年   51853篇
  2000年   49684篇
  1999年   44927篇
  1998年   27601篇
  1997年   27416篇
  1996年   26580篇
  1995年   24732篇
  1994年   24354篇
  1993年   23574篇
  1992年   37830篇
  1991年   35919篇
  1990年   34503篇
  1989年   34950篇
  1988年   32199篇
  1987年   30232篇
  1986年   28620篇
  1985年   30022篇
  1984年   28140篇
  1983年   24363篇
  1982年   23134篇
  1981年   22003篇
  1980年   20483篇
  1979年   23777篇
  1978年   21271篇
  1977年   20132篇
  1976年   18858篇
  1975年   18929篇
  1974年   19699篇
  1973年   19967篇
  1972年   17122篇
  1971年   15639篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
A new brain protein is described which forms an insoluble complex with tubulin, with concomitant stoichiometric hydrolysis of GTP. The complex contains a maximum of one tubulin-binding protein (MW 52,500) per two tubulin dimers. The tubulin-binding protein (TBP) does not compete with colchicine, but in the presence of microtubule-associated proteins tubulin appeared less accessible to it. Proteins such as TBP might sequester tubulin and thereby function either to inhibit indiscriminate polymerization, or to promote ordered nucleation by maintaining high local concentrations.  相似文献   
993.
The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is a more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction.  相似文献   
994.
Enumeration of denitrifying microbial populations in turf   总被引:2,自引:0,他引:2  
Summary Denitrifer populations of a silt and silt loam soil under a Kentucky bluegrass turf were enumerated using the most probable number (MPN) procedure. The influence of soil texture, soil depth, soil moisture, and additions of nitrate fertilizer on denitrifier populations were determined. Saturated soil conditions increased denitrifier populations 87-fold in the silt soil and 121-fold in the silt loam soil. Denitrifier populations did not differ significantly between soil depths and additions of fertilizer nitrate did not influence populations.  相似文献   
995.
The yeast ascospore wall consists of four morphologically distinct layers. The hydrophobic surface layers are biogenically derived from the prospore wall and appear dark after OsO4 staining. They seem to be responsible for the stability of the spores against attack by lytic enzymes. By amino acid analysis of acid hydrolysates of ascospore walls, two new peaks were detected, which were shown to be the racemic and meso form, respectively, of dityrosine. The identity of this hitherto unknown component of the yeast ascospore wall with standard dityrosine was proven by 1H NMR and by mass spectrometry. A 13C NMR spectroscopic investigation of the structure of dityrosine confirmed that, in natural dityrosine, the biphenyl linkage is located ortho, ortho to the hydroxyl groups. Following digestion of the inner layers of isolated ascospore walls it was shown that dityrosine is very probably located only in the surface layers. The same conclusion was reached independently by an investigation of spores of a strain homozygous for the mutation gcn1, which lack the outermost layers of the spore wall and were practically devoid of dityrosine. In sporulating yeast, L-tyrosine was readily incorporated into the dityrosine of the ascospore wall. Control experiments involving vegetative a/alpha cells and nonsporulating alpha/alpha cells under sporulation conditions showed that dityrosine is indeed sporulation-specific.  相似文献   
996.
997.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号