首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   129篇
  1577篇
  2023年   6篇
  2022年   21篇
  2021年   54篇
  2020年   21篇
  2019年   30篇
  2018年   37篇
  2017年   28篇
  2016年   54篇
  2015年   87篇
  2014年   83篇
  2013年   96篇
  2012年   115篇
  2011年   114篇
  2010年   62篇
  2009年   56篇
  2008年   72篇
  2007年   75篇
  2006年   78篇
  2005年   70篇
  2004年   54篇
  2003年   47篇
  2002年   51篇
  2001年   20篇
  2000年   13篇
  1999年   11篇
  1998年   14篇
  1997年   11篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   5篇
  1992年   13篇
  1991年   16篇
  1990年   10篇
  1989年   13篇
  1988年   13篇
  1987年   8篇
  1986年   6篇
  1985年   6篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1980年   6篇
  1978年   4篇
  1976年   5篇
  1974年   5篇
  1967年   4篇
  1966年   3篇
  1965年   4篇
  1963年   6篇
排序方式: 共有1577条查询结果,搜索用时 15 毫秒
21.
Natural tissues are incorporated with vasculature, which is further integrated with a cardiovascular system responsible for driving perfusion of nutrient-rich oxygenated blood through the vasculature to support cell metabolism within most cell-dense tissues. Since scaffold-free biofabricated tissues being developed into clinical implants, research models, and pharmaceutical testing platforms should similarly exhibit perfused tissue-like structures, we generated a generalizable biofabrication method resulting in self-supporting perfused (SSuPer) tissue constructs incorporated with perfusible microchannels and integrated with the modular FABRICA perfusion bioreactor. As proof of concept, we perfused an MLO-A5 osteoblast-based SSuPer tissue in the FABRICA. Although our resulting SSuPer tissue replicated vascularization and perfusion observed in situ, supported its own weight, and stained positively for mineral using Von Kossa staining, our in vitro results indicated that computational fluid dynamics (CFD) should be used to drive future construct design and flow application before further tissue biofabrication and perfusion. We built a CFD model of the SSuPer tissue integrated in the FABRICA and analyzed flow characteristics (net force, pressure distribution, shear stress, and oxygen distribution) through five SSuPer tissue microchannel patterns in two flow directions and at increasing flow rates. Important flow parameters include flow direction, fully developed flow, and tissue microchannel diameters matched and aligned with bioreactor flow channels. We observed that the SSuPer tissue platform is capable of providing direct perfusion to tissue constructs and proper culture conditions (oxygenation, with controllable shear and flow rates), indicating that our approach can be used to biofabricate tissue representing primary tissues and that we can model the system in silico.  相似文献   
22.
DNA methylation is one of the most important epigenetic alterations involved in the control of gene expression. Bisulfite sequencing of genomic DNA is currently the only method to study DNA methylation patterns at single-nucleotide resolution. Hence, next-generation sequencing of bisulfite-converted DNA is the method of choice to investigate DNA methylation profiles at the genome-wide scale. Nevertheless, whole genome sequencing for analysis of human methylomes is expensive, and a method for targeted gene analysis would provide a good alternative in many cases where the primary interest is restricted to a set of genes.Here, we report the successful use of a custom Agilent SureSelect Target Enrichment system for the hybrid capture of bisulfite-converted DNA. We prepared bisulfite-converted next-generation sequencing libraries, which are enriched for the coding and regulatory regions of 174 ADME genes (i.e. genes involved in the metabolism and distribution of drugs). Sequencing of these libraries on Illumina’s HiSeq2000 revealed that the method allows a reliable quantification of methylation levels of CpG sites in the selected genes, and validation of the method using pyrosequencing and the Illumina 450K methylation BeadChips revealed good concordance.  相似文献   
23.
Ras family small GTPases serve as binary molecular switches to regulate a broad array of cellular signaling cascades, playing essential roles in a vast range of normal physiological processes, with dysregulation of numerous Ras-superfamily G-protein-dependent regulatory cascades underlying the development of human disease. However, the physiological function for many “orphan” Ras-related GTPases remain poorly characterized, including members of the Rit subfamily GTPases. Rit is the founding member of a novel branch of the Ras subfamily, sharing close homology with the neuronally expressed Rin and Drosophila Ric GTPases. Here, we highlight recent studies using transgenic and knockout animal models which have begun to elucidate the physiological roles for the Rit subfamily, including emerging roles in the regulation of neuronal morphology and cellular survival signaling, and discuss new genetic data implicating Rit and Rin signaling in disorders such as cancer, Parkinson's disease, autism, and schizophrenia.  相似文献   
24.
The aim of this study was to determine the existence of the circadian rhythm (CR) in the onset of acute myocardial infarction (AMI) in different patient subgroups. Information was collected about 41,244 infarctions from the database of the ARIAM (Analysis of Delay in AMI) Spanish multicenter study. CR in AMI were explored in subgroups of cases categorized by age, gender, previous ischemic heart disease (PIHD), outcome in coronary care unit, infarction electrocardiograph (ECG) characteristics (Q wave or non‐Q wave), and location of AMI. Cases were classified according to these variables in the different subgroups. To verify the presence of CR, a simple test of equality of time series based on the multiple‐sinusoid (24, 12, and 8 h periods) cosinor analysis was developed. For the groups as a whole, the time of pain onset as an indicator of the AMI occurrence showed a CR (p<0.0001), with a morning peak at 10:10 h. All the analyzed subgroups also showed CR. Comparison between subgroups showed significant differences in the PIHD (p<0.01) and infarction ECG characteristics (p<0.01) groups. The CR of the subgroup with Q‐wave infarction differed from that of non‐Q wave subgroup (p<0.01) when the patients had PIHD (23% in Q wave infarction vs. 39.2% in non‐Q wave). AMI onset followed a CR pattern, which is also observed in all analyzed subgroups. Differences in the CR according to the Q/non‐Q wave infarction characteristics could be determined by PIHD. The cosinor model fit with three components (24, 12, and 8 h periods) showed a higher sensitivity than the single 24 h period analysis.  相似文献   
25.
Microbial desulfurization, or biodesulfurization (BDS), of fuels is a promising technology because it can desulfurize compounds that are recalcitrant to the current standard technology in the oil industry. One of the obstacles to the commercialization of BDS is the reduction in biocatalyst activity concomitant with the accumulation of the end product, 2-hydroxybiphenyl (HBP), during the process. BDS experiments were performed by incubating Rhodococcus erythropolis IGTS8 resting-cell suspensions with hexadecane at 0.50 (vol/vol) containing 10 mM dibenzothiophene. The resin Dowex Optipore SD-2 was added to the BDS experiments at resin concentrations of 0, 10, or 50 g resin/liter total volume. The HBP concentration within the cytoplasm was estimated to decrease from 1,100 to 260 μM with increasing resin concentration. Despite this finding, productivity did not increase with the resin concentration. This led us to focus on the susceptibility of the desulfurization enzymes toward HBP. Dose-response experiments were performed to identify major inhibitory interactions in the most common BDS pathway, the 4S pathway. HBP was responsible for three of the four major inhibitory interactions identified. The concentrations of HBP that led to a 50% reduction in the enzymes'' activities (IC50s) for DszA, DszB, and DszC were measured to be 60 ± 5 μM, 110 ± 10 μM, and 50 ± 5 μM, respectively. The fact that the IC50s for HBP are all significantly lower than the cytoplasmic HBP concentration suggests that the inhibition of the desulfurization enzymes by HBP is responsible for the observed reduction in biocatalyst activity concomitant with HBP generation.  相似文献   
26.
Reduced FCGR3B copy number is associated with increased risk of systemic lupus erythematosus (SLE). The five FCGR2/FCGR3 genes are arranged across two highly paralogous genomic segments on chromosome 1q23. Previous studies have suggested mechanisms for structural rearrangements at the FCGR2/FCGR3 locus and have proposed mechanisms whereby altered FCGR3B copy number predisposes to autoimmunity, but the high degree of sequence similarity between paralogous segments has prevented precise definition of the molecular events and their functional consequences. To pursue the genomic pathology associated with FCGR3B copy-number variation, we integrated sequencing data from fosmid and bacterial artificial chromosome clones and sequence-captured DNA from FCGR3B-deleted genomes to establish a detailed map of allelic and paralogous sequence variation across the FCGR2/FCGR3 locus. This analysis identified two highly paralogous 24.5 kb blocks within the FCGR2C/FCGR3B/FCGR2B locus that are devoid of nonpolymorphic paralogous sequence variations and that define the limits of the genomic regions in which nonallelic homologous recombination leads to FCGR2C/FCGR3B copy-number variation. Further, the data showed evidence of swapping of haplotype blocks between these highly paralogous blocks that most likely arose from sequential ancestral recombination events across the region. Functionally, we found by flow cytometry, immunoblotting and cDNA sequencing that individuals with FCGR3B-deleted alleles show ectopic presence of FcγRIIb on natural killer (NK) cells. We conclude that FCGR3B deletion juxtaposes the 5′-regulatory sequences of FCGR2C with the coding sequence of FCGR2B, creating a chimeric gene that results in an ectopic accumulation of FcγRIIb on NK cells and provides an explanation for SLE risk associated with reduced FCGR3B gene copy number.  相似文献   
27.
28.
KSRP is a single strand nucleic acid binding protein that controls gene expression at multiple levels. In this review we focus on the recent molecular, cellular, and structural insights into the mRNA decay promoting function of KSRP. We discuss also some aspects of KSRP-dependent microRNA maturation from precursors that are related to its mRNA destabilizing function. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   
29.
30.
Prior to 2008 and the discovery of several important hawksbill turtle (Eretmochelys imbricata) nesting colonies in the EP (Eastern Pacific), the species was considered virtually absent from the region. Research since that time has yielded new insights into EP hawksbills, salient among them being the use of mangrove estuaries for nesting. These recent revelations have raised interest in the genetic characterization of hawksbills in the EP, studies of which have remained lacking to date. Between 2008 and 2014, we collected tissue samples from 269 nesting hawksbills at nine rookeries across the EP and used mitochondrial DNA sequences (766 bp) to generate the first genetic characterization of rookeries in the region. Our results inform genetic diversity, population differentiation, and phylogeography of the species. Hawksbills in the EP demonstrate low genetic diversity: We identified a total of only seven haplotypes across the region, including five new and two previously identified nesting haplotypes (pooled frequencies of 58.4% and 41.6%, respectively), the former only evident in Central American rookeries. Despite low genetic diversity, we found strong stock structure between the four principal rookeries, suggesting the existence of multiple populations and warranting their recognition as distinct management units. Furthermore, haplotypes EiIP106 and EiIP108 are unique to hawksbills that nest in mangrove estuaries, a behavior found only in hawksbills along Pacific Central America. The detected genetic differentiation supports the existence of a novel mangrove estuary “reproductive ecotype” that may warrant additional conservation attention. From a phylogeographic perspective, our research indicates hawksbills colonized the EP via the Indo‐Pacific, and do not represent relict populations isolated from the Atlantic by the rising of the Panama Isthmus. Low overall genetic diversity in the EP is likely the combined result of few rookeries, extremely small reproductive populations and evolutionarily recent colonization events. Additional research with larger sample sizes and variable markers will help further genetic understanding of hawksbill turtles in the EP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号