全文获取类型
收费全文 | 927篇 |
免费 | 33篇 |
专业分类
960篇 |
出版年
2024年 | 4篇 |
2023年 | 1篇 |
2022年 | 6篇 |
2021年 | 18篇 |
2020年 | 10篇 |
2019年 | 18篇 |
2018年 | 16篇 |
2017年 | 15篇 |
2016年 | 29篇 |
2015年 | 24篇 |
2014年 | 40篇 |
2013年 | 44篇 |
2012年 | 81篇 |
2011年 | 87篇 |
2010年 | 43篇 |
2009年 | 69篇 |
2008年 | 63篇 |
2007年 | 63篇 |
2006年 | 58篇 |
2005年 | 53篇 |
2004年 | 47篇 |
2003年 | 42篇 |
2002年 | 43篇 |
2001年 | 10篇 |
2000年 | 7篇 |
1999年 | 7篇 |
1998年 | 12篇 |
1997年 | 10篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1994年 | 6篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1988年 | 1篇 |
1985年 | 2篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1972年 | 1篇 |
1964年 | 1篇 |
排序方式: 共有960条查询结果,搜索用时 14 毫秒
51.
Förster F Webb B Krukenberg KA Tsuruta H Agard DA Sali A 《Journal of molecular biology》2008,382(4):1089-1106
A major challenge in structural biology is to determine the configuration of domains and proteins in multidomain proteins and assemblies, respectively. All available data should be considered to maximize the accuracy and precision of these models. Small-angle X-ray scattering (SAXS) efficiently provides low-resolution experimental data about the shapes of proteins and their assemblies. Thus, we integrated SAXS profiles into our software for modeling proteins and their assemblies by satisfaction of spatial restraints. Specifically, we modeled the quaternary structures of multidomain proteins with structurally defined rigid domains as well as quaternary structures of binary complexes of structurally defined rigid proteins. In addition to SAXS profiles and the component structures, we used stereochemical restraints and an atomic distance-dependent statistical potential. The scoring function is optimized by a biased Monte Carlo protocol, including quasi-Newton and simulated annealing schemes. The final prediction corresponds to the best scoring solution in the largest cluster of many independently calculated solutions. To quantify how well the quaternary structures are determined based on their SAXS profiles, we used a benchmark of 12 simulated examples as well as an experimental SAXS profile of the homotetramer d-xylose isomerase. Optimization of the SAXS-dependent scoring function generally results in accurate models if sufficiently precise approximations for the constituent rigid bodies are available; otherwise, the best scoring models can have significant errors. Thus, SAXS profiles can play a useful role in the structural characterization of proteins and assemblies if they are combined with additional data and used judiciously. Our integration of a SAXS profile into modeling by satisfaction of spatial restraints will facilitate further integration of different kinds of data for structure determination of proteins and their assemblies. 相似文献
52.
Stenolaemate bryozoans with their stable calcitic skeletons play a significant role in reef building. In the Middle Devonian
Sabkhat Lafayrina reef complex (Western Sahara), bryozoans are abundant and diverse. Although they do not form part of the
principal framework of reefs, bryozoans are involved significantly in reef growth, especially in the initial stage. In this
way, bryozoans are important with respect to initiating reef growth. They contribute greatly to sediment stabilization, making
it possible for principal reef builders to grow on hardened and stabilized substrates, and also play sediment-baffling and
sediment-filling roles. The aim of this study is to document the diversity of bryozoans in a Middle Devonian reef complex
and to estimate their potential for initiation and contribution to reef structures. 相似文献
53.
54.
Carvalho M Schwudke D Sampaio JL Palm W Riezman I Dey G Gupta GD Mayor S Riezman H Shevchenko A Kurzchalia TV Eaton S 《Development (Cambridge, England)》2010,137(21):3675-3685
The high sterol concentration in eukaryotic cell membranes is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila cannot synthesize sterols, but do require them for development. Does this simply reflect a requirement for sterols in steroid hormone biosynthesis, or is bulk membrane sterol also essential in Drosophila? If the latter is true, how do they survive fluctuations in sterol availability and maintain membrane homeostasis? Here, we show that Drosophila require both bulk membrane sterol and steroid hormones in order to complete adult development. When sterol availability is restricted, Drosophila larvae modulate their growth to maintain membrane sterol levels within tight limits. When dietary sterol drops below a minimal threshold, larvae arrest growth and development in a reversible manner. Strikingly, membrane sterol levels in arrested larvae are dramatically reduced (dropping sixfold on average) in most tissues except the nervous system. Thus, sterols are dispensable for maintaining the basic membrane biophysical properties required for cell viability; these functions can be performed by non-sterol lipids when sterols are unavailable. However, bulk membrane sterol is likely to have essential functions in specific tissues during development. In tissues in which sterol levels drop, the overall level of sphingolipids increases and the proportion of different sphingolipid variants is altered. These changes allow survival, but not growth, when membrane sterol levels are low. This relationship between sterols and sphingolipids could be an ancient and conserved principle of membrane homeostasis. 相似文献
55.
Rudaya AY Steiner AA Robbins JR Dragic AS Romanovsky AA 《American journal of physiology. Regulatory, integrative and comparative physiology》2005,289(5):R1244-R1252
Most published studies of thermoregulatory responses of mice to LPS involved a stressful injection of LPS, were run at a poorly controlled and often subneutral ambient temperature (T(a)), and paid little attention to the dependence of the response on the LPS dose. These pitfalls have been overcome in the present study. Male C57BL/6 mice implanted with jugular vein catheters were kept in an environmental chamber at a tightly controlled T(a). The relationship between the T(a)s used and the thermoneutral zone of the mice was verified by measuring tail skin temperature, either by infrared thermography or thermocouple thermometry. Escherichia coli LPS in a wide dose range (10(0)-10(4) microg/kg) was administered through an extension of the jugular catheter from outside the chamber. The responses observed were dose dependent. At a neutral T(a), low (just suprathreshold) doses of LPS (10(0)-10(1) microg/kg) caused a monophasic fever. To a slightly higher dose (10(1.5) microg/kg), the mice responded with a biphasic fever. To even higher doses (10(1.75)-10(4) microg/kg), they responded with a polyphasic fever, of which three distinct phases were identified. The dose dependence and dynamics of LPS fever in the mouse appeared to be remarkably similar to those seen in the rat. However, the thermoregulatory response of mice to LPS in a subthermoneutral environment is remarkably different from that of rats. Although very high doses of LPS (10(4) microg/kg) did cause a late (latency, approximately 3 h) hypothermic response in mice, the typical early (latency, 10-30 min) hypothermic response seen in rats did not occur. The present investigation identifies experimental conditions to study LPS-induced mono-, bi-, and polyphasic fevers and late hypothermia in mice and provides detailed characteristics of these responses. 相似文献
56.
Andrej Bicanski Dimitri Ryczko Jérémie Knuesel Nalin Harischandra Vanessa Charrier Örjan Ekeberg Jean-Marie Cabelguen Auke Jan Ijspeert 《Biological cybernetics》2013,107(5):545-564
Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive. 相似文献
57.
Michael Habeck Haim Haviv Adriana Katz Einat Kapri-Pardes Sophie Ayciriex Andrej Shevchenko Haruo Ogawa Chikashi Toyoshima Steven J. D. Karlish 《The Journal of biological chemistry》2015,290(8):4829-4842
The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-l-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70–80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump. 相似文献
58.
59.
Andrej?KormutakEmail author Martin?Galgoci Denisa?Sukenikova Peter?Bolecek Jana?Libantova Dusan?G?m?ry 《Plant Systematics and Evolution》2018,304(1):71-76
The opposite modes of chloroplast DNA (cpDNA) inheritance were found to operate in the reciprocal crossings of Scots pine (Pinus sylvestris L.) and mountain dwarf pine (Pinus mugo Turra). The crossings were found to be partially compatible. In P. sylvestris × P. mugo crossing, the paternal transmission of cpDNA to the offspring takes place corroborating the generally acknowledged concept of the paternal cpDNA inheritance in gymnosperms. On the contrary, in P. mugo × P. sylvestris crossing the seed progeny exhibited P. mugo haplotype of the mother tree deviating conspicuously from the above concept. In the open pollination offspring of the putatively hybrid individuals of the Scots and mountain dwarf pines, a biparental inheritance of cpDNA was revealed in mother tree with P. mugo haplotype indicating a loosened control of the maternal inheritance of cpDNA in the putative hybrids. Implications and impacts of this finding for further studies are discussed. 相似文献
60.
Daniel J. Saltzberg Shruthi Viswanath Ignacia Echeverria Ilan E. Chemmama Ben Webb Andrej Sali 《Protein science : a publication of the Protein Society》2021,30(1):250-261
Biology is advanced by producing structural models of biological systems, such as protein complexes. Some systems are recalcitrant to traditional structure determination methods. In such cases, it may still be possible to produce useful models by integrative structure determination that depends on simultaneous use of multiple types of data. An ensemble of models that are sufficiently consistent with the data is produced by a structural sampling method guided by a data‐dependent scoring function. The variation in the ensemble of models quantified the uncertainty of the structure, generally resulting from the uncertainty in the input information and actual structural heterogeneity in the samples used to produce the data. Here, we describe how to generate, assess, and interpret ensembles of integrative structural models using our open source Integrative Modeling Platform program ( https://integrativemodeling.org ). 相似文献