首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2053篇
  免费   214篇
  2023年   8篇
  2022年   22篇
  2021年   51篇
  2020年   42篇
  2019年   53篇
  2018年   61篇
  2017年   68篇
  2016年   84篇
  2015年   101篇
  2014年   97篇
  2013年   133篇
  2012年   152篇
  2011年   113篇
  2010年   77篇
  2009年   96篇
  2008年   111篇
  2007年   100篇
  2006年   98篇
  2005年   75篇
  2004年   85篇
  2003年   61篇
  2002年   76篇
  2001年   56篇
  2000年   54篇
  1999年   45篇
  1998年   23篇
  1997年   15篇
  1996年   17篇
  1995年   14篇
  1994年   8篇
  1993年   13篇
  1992年   27篇
  1991年   27篇
  1990年   14篇
  1989年   23篇
  1988年   12篇
  1987年   14篇
  1986年   16篇
  1985年   9篇
  1984年   6篇
  1983年   7篇
  1979年   9篇
  1978年   6篇
  1975年   5篇
  1973年   7篇
  1972年   8篇
  1971年   5篇
  1969年   6篇
  1967年   6篇
  1944年   5篇
排序方式: 共有2267条查询结果,搜索用时 15 毫秒
991.
During the last 50 years, agricultural intensification has caused many wild plant and animal species to go extinct regionally or nationally and has profoundly changed the functioning of agro-ecosystems. Agricultural intensification has many components, such as loss of landscape elements, enlarged farm and field sizes and larger inputs of fertilizer and pesticides. However, very little is known about the relative contribution of these variables to the large-scale negative effects on biodiversity. In this study, we disentangled the impacts of various components of agricultural intensification on species diversity of wild plants, carabids and ground-nesting farmland birds and on the biological control of aphids.In a Europe-wide study in eight West and East European countries, we found important negative effects of agricultural intensification on wild plant, carabid and bird species diversity and on the potential for biological pest control, as estimated from the number of aphids taken by predators. Of the 13 components of intensification we measured, use of insecticides and fungicides had consistent negative effects on biodiversity. Insecticides also reduced the biological control potential. Organic farming and other agri-environment schemes aiming to mitigate the negative effects of intensive farming on biodiversity did increase the diversity of wild plant and carabid species, but – contrary to our expectations – not the diversity of breeding birds.We conclude that despite decades of European policy to ban harmful pesticides, the negative effects of pesticides on wild plant and animal species persist, at the same time reducing the opportunities for biological pest control. If biodiversity is to be restored in Europe and opportunities are to be created for crop production utilizing biodiversity-based ecosystem services such as biological pest control, there must be a Europe-wide shift towards farming with minimal use of pesticides over large areas.  相似文献   
992.
Chest wall mesenchymal hamartoma is an extremely rare benign tumor. Approximately 80 cases have been reported in the literature. Most tumors are manifested at birth with a painless palpable mass of the chest wall, usually unilateral. Respiratory symptoms result from extrinsic compression of the pulmonary parenchyma, and the severity of the symptoms will depend on the size and location of the lesion. Imaging features are characteristic, but definitive diagnosis is histological. Herein, a case is described of a four month old infant with diagnosis of chest wall mesenchymal hamartoma, manifested at birth. Different treatment options are described, including expectations from tumor management, the possibility of spontaneous regression, and the morbidity associated with the surgical option.  相似文献   
993.
Catalases and peroxidases are the most important enzymes that degrade hydrogen peroxide into water and oxygen. These enzymes and superoxide dismutase are the first lines of cell defense against reactive oxygen species. Metarhizium anisopliae displays an increase in catalase–peroxidase activity during germination and growth. To determine the importance of catalase during the invasion process of M. anisopliae, we isolated the cat1 gene. cat1 cDNA expression in Escherichia coli and the subsequent purification of the protein confirmed that the cat1 gene codes for a monofunctional catalase. Expression analysis of this gene by RT-PCR from RNA isolated from fungus grown in liquid cultures showed a decrease in the expression level of the cat1 gene during germination and an increase during mycelium growth. The expression of this gene in the fungus during the infection process of the larvae of Plutella xylostella also showed a significant increase during invasive growth. Transgenic strains overexpressing the cat1 gene had twice the catalase activity of the wild-type strain. This increase in catalase activity was accompanied by a higher level of resistance to exogenous hydrogen peroxide and a reduction in the germination time. This improvement was also observed during the infection of P. xylostella larvae. M. anisopliae transgenic strains overexpressing the cat1 gene grew and spread faster in the soft tissue of the insect, reducing the time to death of the insect by 25% and the dose required to kill 50% of the population 14-fold.  相似文献   
994.
995.
We studied staurosporine-induced cell death in the filamentous fungus Neurospora crassa. The generation of reactive oxygen species during the process appears to be an important signaling event, since addition of the antioxidant glutathione prevents the effects of staurosporine on fungal growth. Selected mutants with mutations in respiratory chain complex I are extremely sensitive to the drug, stressing the involvement of complex I in programmed cell death. Following this finding, we determined that the complex I-specific inhibitor rotenone used in combination with staurosporine results in a synergistic and specific antifungal activity, likely through a concerted action on intracellular glutathione depletion. Paradoxically, the synergistic antifungal activity of rotenone and staurosporine is observed in N. crassa complex I mutants and in Saccharomyces cerevisiae, which lacks complex I. In addition, it is not observed when other complex I inhibitors are used instead of rotenone. These results indicate that the rotenone effect is independent of complex I inhibition. The combination of rotenone and staurosporine is effective against N. crassa as well as against the common pathogens Aspergillus fumigatus and Candida albicans, pointing to its usefulness as an antifungal agent.Programmed cell death (PCD) refers to a genetically controlled process of cellular suicide initiated by endogenous or extrinsic signals. Many of the genes involved are widely conserved from unicellular to multicellular organisms (46). Apoptosis and autophagy, with its particular characteristics, have been recognized as the main categories of PCD (27). The process of PCD is crucial for the development and homeostasis of metazoan organisms and has been implicated in a number of human disorders, including cancer and neurodegenerative and infectious diseases (3, 10, 25, 55).The participation in PCD of mitochondria, the cellular organelles responsible for the production of most cellular ATP in eukaryotes (30), has been well established. Particularly, these organelles have a central role in the intrinsic (mitochondrion-dependent) pathway of apoptosis, which includes production of reactive oxygen species (ROS), membrane depolarization, ultrastructural changes, and the release of cytochrome c and other proteins (18, 50, 55). Drugs like staurosporine (STS), an inhibitor of protein kinases, have been used to induce the mitochondrion-dependent pathway of apoptosis (24, 35). Staurosporine (48) and derivatives have been used in clinical trials for cancer therapy (63). The complex I inhibitor rotenone too has been widely used to induce PCD and also extensively applied as a pesticide (11, 39, 56). Thus, these types of drugs can be employed for the acquisition of fundamental knowledge and for more practical applications, like modulation of the progression of PCD.Modulation of PCD by targeting metabolic pathways involved in the process can be exploited to the benefit of human health in several very significant situations, from cancer therapy (4, 57) to the treatment of fungal infections (3, 52). However, the molecular basis of PCD involves complex metabolic networks (32, 38, 59), and further work is required for their identification. Neurospora crassa has many advantages for biochemical and genetic experiments (14, 17, 23) and is thus a good model organism for the study of mechanisms of PCD. We are interested in identifying the cell molecular pathways associated with PCD and using this knowledge to devise strategies to modulate the process. In this work, we analyze the effects of STS on the N. crassa wild type and mitochondrial complex I mutants and describe the synergistic effect of combining STS and rotenone on this organism and other human-pathogenic fungi.  相似文献   
996.
Although laboratory dependence is an acknowledged problem in microbiology, it is seldom intensively studied or discussed. We demonstrate that laboratory dependence is real and quantifiable even in the popular model Escherichia coli. Here laboratory effects alter the equilibrium composition of a simple community composed of two strains of E. coli. Our data rule out changes in the bacterial strains, chemical batches, and human handling but implicate differences in growth medium, especially the water component.  相似文献   
997.
Impaired smooth muscle contractility is a hallmark of acute acalculous cholecystitis. Although free cytosolic Ca2+ ([Ca2+]i) is a critical step in smooth muscle contraction, possible alterations in Ca2+ homeostasis by cholecystitis have not been elucidated. Our aim was to elucidate changes in the Ca2+ signaling pathways induced by this gallbladder dysfunction. [Ca2+]i was determined by epifluorescence microscopy in fura 2-loaded isolated gallbladder smooth muscle cells, and isometric tension was recorded from gallbladder muscle strips. F-actin content was quantified by confocal microscopy. Ca2+ responses to the inositol trisphosphate (InsP3) mobilizing agonist CCK and to caffeine, an activator of the ryanodine receptors, were impaired in cholecystitic cells. This impairment was not the result of a decrease in the size of the releasable pool. Inflammation also inhibited Ca2+ influx through L-type Ca2+ channels and capacitative Ca2+ entry induced by depletion of intracellular Ca2+ pools. In addition, the pharmacological phenotype of these channels was altered in cholecystitic cells. Inflammation impaired contractility further than Ca2+ signal attenuation, which could be related to the decrease in F-actin that was detected in cholecystitic smooth muscle cells. These findings indicate that cholecystitis decreases both Ca2+ release and Ca2+ influx in gallbladder smooth muscle, but a loss in the sensitivity of the contractile machinery to Ca2+ may also be responsible for the impairment in gallbladder contractility.  相似文献   
998.
A search of the Strongylocentrotus purpuratus genome for genes associated with cell cycle control and DNA metabolism shows that the known repertoire of these genes is conserved in the sea urchin, although with fewer family members represented than in vertebrates, and with some cases of echinoderm-specific gene diversifications. For example, while homologues of the known cyclins are mostly encoded by single genes in S. purpuratus (unlike vertebrates, which have multiple isoforms), there are additional genes encoding novel cyclins of the B and K/L types. Almost all known cyclin-dependent kinases (CDKs) or CDK-like proteins have an orthologue in S. purpuratus; CDK3 is one exception, whereas CDK4 and 6 are represented by a single homologue, referred to as CDK4. While the complexity of the two families of mitotic kinases, Polo and Aurora, is close to that found in the nematode, the diversity of the NIMA-related kinases (NEK proteins) approaches that of vertebrates. Among the nine NEK proteins found in S. purpuratus, eight could be assigned orthologues in vertebrates, whereas the ninth is unique to sea urchins. Most known DNA replication, DNA repair and mitotic checkpoint genes are also present, as are homologues of the pRB (two) and p53 (one) tumor suppressors. Interestingly, the p21/p27 family of CDK inhibitors is represented by one homologue, whereas the INK4 and ARF families of tumor suppressors appear to be absent, suggesting that these evolved only in vertebrates. Our results suggest that, while the cell cycle control mechanisms known from other animals are generally conserved in sea urchin, parts of the machinery have diversified within the echinoderm lineage. The set of genes uncovered in this analysis of the S. purpuratus genome should enhance future research on cell cycle control and developmental regulation in this model.  相似文献   
999.
For a long time lysosomes were considered terminal organelles involved in the degradation of different substrates. However, this view is rapidly changing by evidence demonstrating that these organelles and their content display specialized functions in addition to the degradation of substances. Many lysosomal proteins have been implicated in specialized cellular functions and disorders such as antigen processing, targeting of surfactant proteins, and most lysosomal storage disorders. To date, about fifty lysosomal hydrolases have been identified, and the majority of them are targeted to the lysosomes via the mannose-6-phosphate receptor (M6P-Rc). However, recent studies on the intracellular trafficking of the non-enzymic lysosomal proteins prosaposin and GM2 activator (GM2AP) demonstrated that they use an alternative receptor termed "sortilin". Existing evidence suggests that some hydrolases traffic to the lysosomes in a mannose 6-phophate-indepentend manner. The possibility that sortilin is implicated in the targeting of some soluble hydrolases, as well as the consequences of this process, is addressed in the present review.  相似文献   
1000.
Since its inception the IAEA program in radiation and tissue banking supported the establishment of twenty five tissue banks in different countries. Now more than 103 tissue banks are now operating in these countries. The production of sterilized tissues has grown in an exponential mode within the IAEA program. From 1988 until the end of 2000 the production of sterilized tissues was 224,706 grafts, with an estimated value of at least $51,768,553 million dollars at the mean current charge rate in non-commercial banks in Europe and USA. During the period 1997–2002 several countries from Asia and the Pacific region produced more than 155,000 grafts, with an estimated value of about $36.7 million dollars. Training was considered to be one of the most important tasks to be supported. A total of 192 students were registered in the training program and 146 students graduated with a University Diploma. For many developing countries an additional benefit is not having to import expensive sterilized tissues from developed countries, but the exposure of orthopedic and plastic surgeons working, to new methods of using allografts in specific surgical treatments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号