首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14636篇
  免费   1221篇
  国内免费   6篇
  2023年   64篇
  2022年   140篇
  2021年   318篇
  2020年   166篇
  2019年   207篇
  2018年   312篇
  2017年   276篇
  2016年   446篇
  2015年   688篇
  2014年   864篇
  2013年   1008篇
  2012年   1351篇
  2011年   1241篇
  2010年   796篇
  2009年   740篇
  2008年   951篇
  2007年   940篇
  2006年   894篇
  2005年   886篇
  2004年   791篇
  2003年   707篇
  2002年   695篇
  2001年   152篇
  2000年   87篇
  1999年   132篇
  1998年   143篇
  1997年   99篇
  1996年   102篇
  1995年   76篇
  1994年   62篇
  1993年   74篇
  1992年   51篇
  1991年   40篇
  1990年   32篇
  1989年   32篇
  1988年   26篇
  1987年   14篇
  1986年   17篇
  1985年   13篇
  1984年   21篇
  1983年   24篇
  1982年   12篇
  1981年   15篇
  1980年   23篇
  1979年   17篇
  1978年   10篇
  1977年   11篇
  1976年   12篇
  1973年   7篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
971.
The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [13C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.Archaea have long been known as extremophiles, since most cultivated archaeal strains were cultivated from extreme environments, such as acidic, hot, and high-salt environments. The view of archaea as extremophiles (i.e., acidophiles, thermophiles, and halophiles) has radically changed by the application of molecular technologies, including PCR in environmental microbiology. Using Archaea-specific PCR primers, novel archaeal 16S rRNA gene sequences were discovered in seawater (23, 27). Following these discoveries, an ever-increasing and unexpectedly high variety of archaeal 16S rRNA gene sequences has been reported from diverse “nonextreme” environments (67). This indicates that archaea are, like bacteria, ubiquitous in the biosphere rather than exclusively inhabiting specific extreme niches. Archaea are abundant in water columns of some oceanic provinces (33, 36) and deep-subsea floor sediments (11, 12, 48). Despite the increasing number of reports of the diversity and abundance of these nonextreme archaea by molecular ecological studies, their physiology and ecological roles have remained enigmatic.Oxidation of ammonia, a trait long thought to be exclusive to the domain Bacteria (13), was recently suggested to be a trait of archaea of the crenarchaeal groups I.1a and I.1b, based on a metagenome analysis (79) and supported by the discovery of archaeal amoA-like genes in environmental shotgun sequencing studies of Sargasso Sea water (80) and genomic analysis of “Candidatus Cenarchaeum symbiosum,” a symbiont of a marine sponge (30). Molecular ecological studies indicated that these ammonia-oxidizing archaea (AOA) are often predominant over ammonia-oxidizing bacteria (AOB) in ocean waters (9, 53, 87), soils (17, 47), and marine sediments (61). Critical evidence for autotrophic archaeal ammonia oxidation was obtained by the characterization of the first cultivated mesophilic crenarchaeon (group I.1a), “Candidatus Nitrosopumilus maritimus SCM1,” from an aquarium (38), and a related archaeon from North Sea water (87) and subsequently by enrichment of thermophilic AOA (22, 31). Whole-genome-based phylogenetic studies recently indicated that the nonthermophilic crenarchaea, including the AOA, likely form a phylum separate from the Crenarchaeota and Euryarchaeota phyla (15, 16, 72). This proposed new phylum was called Thaumarchaeota (15).Microorganisms in marine sediments contribute significantly to global biogeochemical cycles because of their abundance (85). Nitrification is essential to the nitrogen cycle in marine sediments and may be metabolically coupled with denitrification and anaerobic ammonium oxidation, resulting in the removal of nitrogen as molecular nitrogen and the generation of greenhouse gases, such as nitrous oxide (19, 75). Compared with studies on archaeal nitrification in the marine water column, only limited information on archaeal nitrification in marine sediments is available so far. Archaeal amoA genes have been retrieved from marine and coastal sediments (8, 26, 61), and the potentially important role of AOA in nitrification has been suggested based on the abundance of archaeal amoA genes relative to that of bacterial amoA genes in surface marine sediments from Donghae (South Korea) (61). Cultivation of AOA, although difficult (38), remains essential to estimating the metabolic potential of archaea in environments such as soils (47) and marine sediments (61). Here, we report the successful enrichment of AOA of crenarchaeal group I.1a from marine sediments by employing a coculture with sulfur-oxidizing bacteria (SOB) which was maintained for ca. 20 months with biweekly transfers. In this way, we were able to characterize AOA from marine sediments, providing a clue for the role of AOA in the nitrogen cycle of marine sediments.  相似文献   
972.
Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH4Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.Glaciers in alpine regions are highly sensitive to changes in climatic conditions (29). Increasing global atmospheric temperatures over the last decades have resulted in the recession of alpine glaciers (18). Forefields of temperate alpine glaciers provide unique opportunities to study initial soil formation as well as microbial and plant succession along the chronosequences (12, 26, 34, 36). The forefields close to the glacier terminus are initially vegetation free and consist mainly of rock material with high fractions of silt-sized grains with low C and N content and small amounts of available nutrients (14). Mineral weathering is a key process in the formation of soils (1, 26), and the crucial importance of microbially promoted mineral weathering for nutrient acquisition is increasingly recognized (2, 4, 39, 46). Recently exposed rock surfaces can be considered primary ecosystems where only a few microbes that are adapted due to their mineral-weathering abilities can grow (17). Some cations of rock-forming minerals are essential for proper cell functions. However, our understanding of geochemically significant microbes in forefields of temperate alpine glacier is still very limited but is crucial for increasing our knowledge of nutrient mobilization and the buildup of organic matter that is essential for the development of macroorganisms.The area of the Damma glacier in Central Switzerland is characterized by a relatively homogenous granitic rock basement and is used as field site of the interdisciplinary research project “Biosphere-Geosphere interactions: Linking climate change, weathering, soil formation and ecosystem evolution (BigLink)” (5). In the frame of this research project, we studied the functional roles of granite-colonizing microbes as biotic weathering agents in previously glaciated areas. So far, relatively little is known about microbe-granite interactions, especially regarding the release of trace elements. Several studies have examined the dissolution of specific granite-forming minerals in the presence of actively metabolizing bacteria or compounds that simulate metabolic activity (24, 30, 31, 37, 38, 44). There is a general agreement that microbially produced organic acids, siderophores, and extracellular polysaccharides can all promote dissolution of minerals. Previous dissolution experiments have mainly been performed with (i) commercially obtained minerals (23, 45), (ii) model microorganisms that were commercially obtained from culture collections (3, 35, 45), or (iii) laboratory strains, such as those of Bacillus subtilis (23) and Burkholderia fungorum (47). Most studies have focused on individual mineral specimens rather than on the mixture of minerals that are present in granite rock (47). Few studies observed mineral weathering of collected rock and bacteria isolated from volcanic areas covered with vegetation (30, 31). Moreover, there are no studies on microbial weathering for such immediately deglaciated environments combining functional and taxonomic investigations, probably due to the difficulties in obtaining heterotrophic bacterial isolates from granitic glacier forefields. In spite of this, a comprehensive culture collection containing approximately 500 bacterial strains, which were isolated from the glacier tongue of the Damma glacier, was established. Full-length 16S rRNA gene sequences of 120 isolates revealed that many isolates obtained from oligotrophic media were closely related to readily cultivable heterotrophic bacteria (e.g., Arthrobacter sp., Collimonas sp., Paenibacillus sp., and Pseudomonas sp.). These bacteria have been found to enhance mineral dissolution (39).Our aim was to characterize the impact of microorganisms on granite weathering. We performed laboratory dissolution experiments with sterile crushed granite rock material, 12 bacterial strains, and 1 algal strain. To investigate the potential weathering abilities of these isolates, granite dissolution experiments were performed abiotically with model agents, such as HCl for proton-promoted weathering or oxalate and citrate and KCN for ligand-promoted weathering.  相似文献   
973.
Large-scale (temporal and/or spatial) molecular investigations of the diversity and distribution of arbuscular mycorrhizal fungi (AMF) require considerable sampling efforts and high-throughput analysis. To facilitate such efforts, we have developed a TaqMan real-time PCR assay to detect and identify AMF in environmental samples. First, we screened the diversity in clone libraries, generated by nested PCR, of the nuclear ribosomal DNA internal transcribed spacer (ITS) of AMF in environmental samples. We then generated probes and forward primers based on the detected sequences, enabling AMF sequence type-specific detection in TaqMan multiplex real-time PCR assays. In comparisons to conventional clone library screening and Sanger sequencing, the TaqMan assay approach provided similar accuracy but higher sensitivity with cost and time savings. The TaqMan assays were applied to analyze the AMF community composition within plots of a large-scale plant biodiversity manipulation experiment, the Jena Experiment, primarily designed to investigate the interactive effects of plant biodiversity on element cycling and trophic interactions. The results show that environmental variables hierarchically shape AMF communities and that the sequence type spectrum is strongly affected by previous land use and disturbance, which appears to favor disturbance-tolerant members of the genus Glomus. The AMF species richness of disturbance-associated communities can be largely explained by richness of plant species and plant functional groups, while plant productivity and soil parameters appear to have only weak effects on the AMF community.Arbuscular mycorrhizae are mutualistic associations between roots of plants and fungi that have been present for more than 400 million years (54). Approximately 80% of examined land plants (71), and almost all fungi of the phylum Glomeromycota (60), are capable of forming such associations. The main benefit of this relationship for plants is that it facilitates their acquisition of nutrients (especially P and N), while the fungus receives photoassimilates (7, 62). About 200 Glomeromycota species have been described to date, based on spore morphology (http://www.lrz-muenchen.de/∼schuessler/amphylo/amphylogeny.html), but there is increasing molecular evidence of significantly higher diversity in arbuscular mycorrhizal fungi (AMF) (10, 72).Diverse AMF communities have been detected in a wide range of plant communities (inter alia grasslands, boreal forests, and tropical communities; for an overview, see reference 48). Hence, AMF have been considered to be tolerant of wide ranges of ecological conditions and capable of associating with diverse plant partners. Identifying the factors regulating their community assemblages is challenging, but AMF community composition has been shown to be influenced by plant species diversity (e.g., see references 10, 22, and 33), and conversely, significant effects of AMF species and communities on the diversity and productivity of plant communities have been described (25, 68). Soil physicochemical parameters like phosphorus, nitrogen, and carbon availability (e.g., see references 4, 9, and 31); pH (17); moisture content (53); and disturbance (30) also reportedly influence AMF distribution. Hence, there is some support for niche theory, which presumes that two species of the same trophic level cannot coexist in a limited system and, if two species are present in such circumstances, one should become extinct (21). As a corollary, two cooccurring species must occupy niches that differ in some dimensions, e.g., plant hosts and/or soil properties (28). However, there are also indications that neutral ecological processes, as well as niche-defining parameters, may influence AMF diversity and community composition (17, 39). In contrast to niche theory, neutral theory (27) postulates that all individuals of every species at a given trophic level in a food web have ecological equivalence, and thus, all species within trophically defined communities can be regarded as open nonequilibrium assemblages that are solely shaped by dispersal and distinctions in spatiotemporal dimensions. According to the work of Hubbell (27), neutrality is defined at the level of individual organisms with identical probabilities of birth, death, migration, and speciation and not at the species level. In order to explore AMF communities more thoroughly and to test competing hypotheses, such as those raised by the niche and neutral theories, robust methods for high-throughput analyses of the communities are required.Recent investigations of variables that affect the structure of AMF communities have considered relationships between niche-defining dimensions, such as soil types (39) and pH gradients (17), and spatial variations in AMF community structure but not the role of plant diversity or functional traits of host plants. There have been several plant diversity manipulation experiments designed for coanalyzing multiple sets of ecological variables (e.g., the BIODEPTH and Cedar Creek projects) that would have been ideal for detailed examinations of effects of ecological variables on AMF, but previously reported AMF analyses in these experiments have been limited to counts of spores in a single study (11). However, not all AMF species regularly sporulate, and when present, spores poorly reflect AMF diversity (69), since active AMF occur as mycelia in roots and soils (e.g., see references 12 and 26). PCR-based molecular techniques enable much more rigorous characterization of AMF communities in these compartments (e.g., see references 26, 36, and 72), but assessments of broad spatial (42) and/or temporal (52) variations in AMF communities require analysis of large numbers of samples, which is not feasible using conventional PCR amplification followed by cloning and sequencing. This challenge can be potentially met by real-time PCR-based approaches, in which the AMF sequence types present in compartments of interest are first identified and then sequence type-specific probes are used for large-scale screening in real-time PCR TaqMan assays.In the study presented here, we explored AMF diversity in plots used in the Jena Experiment, a grassland plant diversity manipulation of 60 plant species representing four functional groups in 81 plots of 400 m2 (56). The overall AMF diversity and community structure were first assessed by PCR amplification, cloning, and sequencing (55) of internal transcribed spacer (ITS) ribosomal DNA (rDNA) gene sequences in soil samples from 23 representative plots. Using the acquired data, we then developed sequence type-specific probes, which were applied in high-throughput real-time PCR TaqMan assays of samples from all 81 experimental plots, and the effects of 15 plant and soil variables on the AMF community assemblage were investigated.  相似文献   
974.
The study of ancient DNA plays an important role in archaeological and palaeontological research as well as in pathology and forensics. Here, we present a new tool for ancient DNA analysis, which overcomes contamination problems, DNA degradation, and the negative effects of PCR inhibitors while reducing the amount of starting target material in the picogram range. Ancient bone samples from four Egyptian mummies were examined by combining laser microdissection, conventional DNA extraction, and low‐volume PCR. Initially, several bone particles (osteons) in the micrometer range were extracted by laser microdissection. Subsequently, ancient DNA amplification was performed to verify our extraction method. Amelogenin and β‐actin gene specific fragments were amplified via low‐volume PCR in a total reaction volume of 1 μl. Results of microdissected mummy DNA samples were compared to mummy DNA, which was extracted using a standard DNA extraction method based on pulverization of bone material. Our results highlight the combination of laser microdissection and low‐volume PCR as a promising new technique in ancient DNA analysis. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
975.
We report longitudinal 15N relaxation rates derived from two-dimensional (15N, 13C) chemical shift correlation experiments obtained under magic angle spinning for the potassium channel KcsA-Kv1.3 reconstituted in multilamellar vesicles. Thus, we demonstrate that solid-state NMR can be used to probe residue-specific backbone dynamics in a membrane-embedded protein. Enhanced backbone mobility was detected for two glycine residues within the selectivity filter that are highly conserved in potassium channels and that are of core relevance to the filter structure and ion selectivity.  相似文献   
976.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.  相似文献   
977.
In organisms with dormant stages, life‐history responses to past pollution can be studied retrospectively. Here, we study such responses in a rotifer (Brachionus calyciflorus) from the once heavily copper‐polluted Lake Orta (Italy). We extracted resting eggs from sediments, established clonal lineages from hatchlings, and exposed newborns of these lineages to one of three copper concentrations that each mimicked a specific period in the lake''s pollution history. For each rotifer, we daily collected life‐table data. We then estimated treatment‐specific vital rates and used a stage‐structured population model to project population growth rate λ. We also estimated elasticities of λ to vital rates and contributions of vital rates to observed Δλ between copper treatments. As expected, λ decreased with increasing copper concentration. This decrease resulted mostly from a decline in juvenile survival rate (SJ ) and partly from a decline in the survival rate of asexually reproducing females (SA ). Maturation rate, and with one exception fecundity, also declined but did not contribute consistently to Δλ. λ was most elastic to SJ and SA , indicating that survival rates were under stronger selection than maturation rate and fecundity. Together, our results indicate that variation in juvenile survival is a key component in the rotifers’ copper response. The consistent decrease in SJ with increasing copper stress and the sensitivity of λ to that decrease also suggest that juvenile survival is a useful indicator of population performance under environmental pollution.  相似文献   
978.
Divergence of ecological niches in phylogenetically closely related species indicates the importance of ecology in speciation, especially for sympatric species are considered. Such ecological diversification provides an advantage of alleviating interspecies competition and promotes more efficient exploitation of environmental resources, thus being a basis for ecological speciation. We analyzed a group of closely related species from the subgenus Neritrema (genus Littorina, Caenogastropoda) from the gravel‐bouldery shores. In two distant sites at the Barents and Norwegian Sea, we examined the patterns of snail distribution during low tide (quantitative sampling stratified by intertidal level, presence of macrophytes, macrophyte species, and position on them), shell shape and its variability (geometric morphometrics), and metabolic characteristics (metabolomic profiling). The studied species diversified microbiotopes, which imply an important role of ecological specification in the recent evolution of this group. The only exception to this trend was the species pair L. arcana / L. saxatilis, which is specifically discussed. The ecological divergence was accompanied by differences in shell shape and metabolomic characteristics. Significant differences were found between L. obtusata versus L. fabalis and L. saxatilis / L. arcana versus L. compressa both in shell morphology and in metabolomes. L. saxatilis demonstrated a clear variability depending on intertidal level which corresponds to a shift in conditions within the occupied microhabitat. Interestingly, the differences between L. arcana (inhabiting the upper intertidal level) and L. compressa (inhabiting the lower one) were analogous to those between the upper and lower fractions of L. saxatilis. No significant level‐dependent changes were found between the upper and lower fractions of L. obtusata, most probably due to habitat amelioration by fucoid macroalgae. All these results are discussed in the contexts of the role of ecology in speciation, ecological niche dynamics and conservatism, and evolutionary history of the Neritrema species.  相似文献   
979.
Acyl carrier proteins of mitochondria (ACPMs) are small (∼ 10 kDa) acidic proteins that are homologous to the corresponding central components of prokaryotic fatty acid synthase complexes. Genomic deletions of the two genes ACPM1 and ACPM2 in the strictly aerobic yeast Yarrowia lipolytica resulted in strains that were not viable or retained only trace amounts of assembled mitochondrial complex I, respectively. This suggested different functions for the two proteins that despite high similarity could not be complemented by the respective other homolog still expressed in the deletion strains. Remarkably, the same phenotypes were observed if just the conserved serine carrying the phosphopantethein moiety was exchanged with alanine. Although this suggested a functional link to the lipid metabolism of mitochondria, no changes in the lipid composition of the organelles were found. Proteomic analysis revealed that both ACPMs were tightly bound to purified mitochondrial complex I. Western blot analysis revealed that the affinity tagged ACPM1 and ACPM2 proteins were exclusively detectable in mitochondrial membranes but not in the mitochondrial matrix as reported for other organisms. Hence we conclude that the ACPMs can serve all their possible functions in mitochondrial lipid metabolism and complex I assembly and stabilization as subunits bound to complex I.  相似文献   
980.
We investigate the dependence of fiber brightness on three-dimensional fiber orientation when imaging biopolymer networks with confocal reflection microscopy (CRM) and confocal fluorescence microscopy (CFM). We compare image data of fluorescently labeled type I collagen networks concurrently acquired using each imaging modality. For CRM, fiber brightness decreases for more vertically oriented fibers, leaving fibers above ∼50° from the imaging plane entirely undetected. As a result, the three-dimensional network structure appears aligned with the imaging plane. In contrast, CFM data exhibit little variation of fiber brightness with fiber angle, thus revealing an isotropic collagen network. Consequently, we find that CFM detects almost twice as many fibers as are visible with CRM, thereby yielding more complete structural information for three-dimensional fiber networks. We offer a simple explanation that predicts the detected fiber brightness as a function of fiber orientation in CRM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号