首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13296篇
  免费   1058篇
  国内免费   2篇
  2023年   58篇
  2022年   114篇
  2021年   270篇
  2020年   160篇
  2019年   192篇
  2018年   259篇
  2017年   253篇
  2016年   412篇
  2015年   667篇
  2014年   766篇
  2013年   923篇
  2012年   1253篇
  2011年   1160篇
  2010年   701篇
  2009年   620篇
  2008年   892篇
  2007年   929篇
  2006年   776篇
  2005年   757篇
  2004年   669篇
  2003年   638篇
  2002年   629篇
  2001年   107篇
  2000年   77篇
  1999年   103篇
  1998年   144篇
  1997年   88篇
  1996年   75篇
  1995年   70篇
  1994年   71篇
  1993年   71篇
  1992年   51篇
  1991年   49篇
  1990年   43篇
  1989年   30篇
  1988年   27篇
  1987年   22篇
  1986年   23篇
  1985年   15篇
  1984年   22篇
  1983年   19篇
  1982年   8篇
  1981年   17篇
  1980年   14篇
  1979年   10篇
  1978年   11篇
  1975年   8篇
  1971年   11篇
  1969年   8篇
  1966年   8篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
971.
In this study we investigated the effects of gastrectomy (Gx) and of the gastric hormone, ghrelin, on the expression of proteins in brown adipose tissue (BAT) that are thought to be involved in thermogenesis. Heat production in BAT is known to depend upon activation and increased expression of beta3-adrenergic receptors (beta3-AR) and the consequent up-regulation of uncoupling protein 1 (UCP1). Mice were subjected to Gx or sham operation. One week later they started to receive daily subcutaneous injections of either saline or ghrelin (12 nmol) for two or eight weeks. Neither Gx nor ghrelin affected daily food intake. Gx did not lower body weight gain (except during the first post-operative week) but Gx mice responded to eight weeks of ghrelin treatment with a greater body weight increase (37%, p<0.05) than saline-injected Gx mice; sham-operated mice did not respond to ghrelin. Gx resulted in a greatly reduced expression of both UCP1 and beta3-AR mRNA in BAT (50% reduction or more, p<0.01) compared to sham-operated mice. Eight weeks of ghrelin treatment raised the UCP1 as well as the beta3-AR mRNA expression in the Gx mice, whereas two weeks of ghrelin treatment decreased UCP1 and beta3-AR mRNA expression compared to Gx mice receiving saline. In fact, mRNA expression in Gx mice after treatment with ghrelin for eight weeks was similar to that in saline-treated sham-operated mice. Ghrelin did not affect UCP1 and beta3-AR mRNA in sham-operated mice neither two nor eight weeks after the operation. The results suggest 1) that signals from the stomach stimulate BAT UCP1 (and possibly thermogenesis) and 2) that ghrelin may contribute to the control of UCP1 expression.  相似文献   
972.
One of the major drawbacks of DNA-based microbial diagnostics is its inability to discriminate between live and dead bacteria. Due to the persistence of DNA in the environment after cells have lost their viability, DNA-based assays cannot assess pathogenic risk since signals can originate from both live and dead cells. Presented here is a potential application of the novel chemical propidium monoazide (PMA), which results in the selective suppression of DNA detection from dead cells. PMA can only penetrate dead cells with permeabilized cell membranes. Upon intercalation into the DNA, covalent crosslinkage of PMA to DNA is achieved through light exposure. This modification prevents the DNA from being amplified by PCR. The method, in combination with quantitative PCR as a diagnostic tool, successfully monitored the disinfection efficacy of hypochlorite, benzalkonium and heat on several model pathogens. Threshold cycle numbers increased with increasing disinfection strength after PMA treatment of samples compared to non-PMA treated samples. With some disinfectant-specific differences, monitoring viability loss with membrane integrity as an indicator seemed to be more conservative than monitoring viability loss with plate counts. Loss of viability after short UV-exposure could not be monitored with PMA as UV light affects viability by inducing DNA damage without directly affecting membrane permeability.  相似文献   
973.
We study equilibrium aspects of molecular recognition of two biomolecules using idealized model systems and methods from statistical physics. Starting from the basic experimental findings we demonstrate exemplarily how an idealized coarse-grained model for the investigation of molecular recognition of two biomolecules can be developed. In addition we provide details regarding two model systems for the recognition of a flexible and a rigid biomolecule respectively, the latter taking into account conformational changes. We focus particularly on the interplay and influence of the correlations of the residue distributions of the biomolecules on the recognition process.  相似文献   
974.
The yeast Kluyveromyces marxianus presents several interesting features that make this species a promising industrial yeast for the production of several compounds. In order to take full advantage of this yeast and its particular properties, proper tools for gene disruption and metabolic engineering are needed. The Cre-loxP system is a very versatile tool that allows for gene marker rescue, resulting in mutant strains free of exogenous selective markers, which is a very important aspect for industrial application. As the Cre-loxP system works in some non-conventional yeasts, namely Kluyveromyces lactis, we wished to know whether it also works in K. marxianus. Here, we report the validation of this system in K. marxianus CBS 6556, by disrupting two copies of the LAC4 gene, which encodes a beta-galactosidase activity.  相似文献   
975.
Microarrays have rapidly become an indispensable tool for gene analysis. Microarray experiments can be cost prohibitive, however, largely due to the price of the arrays themselves. Whilst different methods for stripping filter arrays on membranes have been established, only very few protocols are published for thermal and chemical stripping of microarrays on glass. Most of these protocols for stripping microarrays on glass were developed in combination with specific surface chemistry and different coatings for covalently immobilizing presynthesized DNA in a deposition process. We have developed a method for stripping commercial in situ microarrays using a multi-step procedure. We present a method that uses mild chemical degradation complemented by enzymatic treatment. We took advantage of the differences in biochemical properties of covalently linked DNA oligonucleotides on in situ synthesized microarrays and the antisense cRNA hybridization probes. The success of stripping protocols for microarrays on glass was critically dependent on the type of arrays, the nature of sample used for hybridization, as well as hybridization and washing conditions. The protocol employs alkali hydrolysis of the cRNA, several enzymatic degradation steps using RNAses and Proteinase K, combined with appropriate washing steps. Stripped arrays were rehybridized using the same protocols as for new microarrays. The stripping method was validated with microarrays from different suppliers and rehybridization of stripped in situ arrays yielded comparable results to hybridizations done on unused, new arrays with no significant loss in precision or accuracy. We show that stripping of commercial in situ arrays is feasible and that reuse of stripped arrays gave similar results compared to unused ones. This was true even for biological samples that show only slight differences in their expression profiles. Our analyses indicate that the stripping procedure does not significantly influence data quality derived from post-primary hybridizations. The method is robust, easy to perform, inexpensive, and results after reuse are of comparable accuracy to new arrays.  相似文献   
976.
We measured net ecosystem CO2 flux (F n) and ecosystem respiration (R E), and estimated gross ecosystem photosynthesis (P g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest ecosystems with a net ecosystem carbon gain during the second year of 293 ± 11 g C m−2 year−1 showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem respiration from October to March was 22% and 30% of annual flux, respectively, suggesting that both cold-season carbon gain and loss were important in the annual carbon cycle of the ecosystem. Model fit of R E of a classic, first-order exponential equation related to temperature (second year; R 2 = 0.65) was improved when the P g rate was incorporated into the model (second year; R 2 = 0.79), suggesting that daytime R E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R E decreased from apparent Q 10 values of 3.3 to 3.9 by the classic equation to a more realistic Q 10 of 2.5 by the modified model. The model introduces R photo, which describes the part of respiration being tightly coupled to the photosynthetic rate. It makes up 5% of the assimilated carbon dioxide flux at 0°C and 35% at 20°C implying a high sensitivity of respiration to photosynthesis during summer. The simple model provides an easily applied, non-intrusive tool for investigating seasonal trends in the relationship between ecosystem carbon sequestration and respiration.  相似文献   
977.
978.
In common bean (Phaseolus vulgaris L.), Fusarium root rot (caused by Fusarium solani f. sp. phaseoli) disease severity is increased by environmental factors that stress the plant. The current study used reciprocal grafting techniques with the resistant cultivar FR266 and the susceptible cultivar Montcalm to determine if the genetic control of resistance is conferred by the rootstock (root genotype) or the scion (shoot genotype) and if root vigor played a role in resistance. The influence of a compacted layer on root and shoot genotype response and root rot resistance was studied. Root rot resistance was found to be controlled by the root genotype, such that on a scale of 1 to 7 (severe disease) the FR266 root had an average score of 2.3 and the Montcalm root had an average score of 4.4. However, when grafted plants were grown in the presence of a compacted layer, the FR266 root and/or shoot genotype in any graft combination with the susceptible Montcalm had reduced root rot (score = 2.4 average) than the Montcalm self graft (score = 4.5). Root mass was shown to be controlled by the root genotype in the absence of compaction such that the FR266 root was 26% larger that the Montcalm root when grafted onto a FR266 shoot or a Montcalm shoot. When a compacted layer was present the root and shoot genotype both contributed to root mass. Average root diameter was controlled by the shoot genotype, as the FR266 shoot grafted to Montcalm or FR266 roots had thicker roots (average diameter 0.455 mm) than the Montcalm shoot (average diameter 0.418 mm). This study shows evidence that root vigor in the presence of Fusarium disease pressure should be evaluated to effectively develop common bean lines resistant to Fusarium root rot across a range of environments.  相似文献   
979.
Redox modulation is a general mechanism for enzyme regulation, particularly for the post-translational regulation of the Calvin cycle in chloroplasts of green plants. Although red algae and photosynthetic protists that harbor plastids of red algal origin contribute greatly to global carbon fixation, relatively little is known about post-translational regulation of chloroplast enzymes in this important group of photosynthetic eukaryotes. To address this question, we used biochemistry, phylogenetics and analysis of recently completed genome sequences. We studied the functionality of the chloroplast enzymes phosphoribulokinase (PRK, EC 2.7.1.19), NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP-GAPDH, GapA, EC 1.2.1.13), fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11) and glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), as well as NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.37) in the unicellular red alga Galdieria sulphuraria (Galdieri) Merola. Despite high sequence similarity of G. sulphuraria proteins to those of other photosynthetic organisms, we found a number of distinct differences. Both PRK and GAPDH co-eluted with CP12 in a high molecular weight complex in the presence of oxidized glutathione, although Galdieria CP12 lacks the two cysteines essential for the formation of the N-terminal peptide loop present in higher plants. However, PRK inactivation upon complex formation turned out to be incomplete. G6PDH was redox modulated, but remained in its tetrameric form; FBPase was poorly redox regulated, despite conservation of the two redox-active cysteines. No indication for the presence of plastidic NADP-MDH (and other components of the malate valve) was found.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号