首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13306篇
  免费   1060篇
  国内免费   2篇
  2023年   58篇
  2022年   129篇
  2021年   270篇
  2020年   160篇
  2019年   192篇
  2018年   259篇
  2017年   253篇
  2016年   411篇
  2015年   666篇
  2014年   765篇
  2013年   922篇
  2012年   1253篇
  2011年   1159篇
  2010年   701篇
  2009年   620篇
  2008年   892篇
  2007年   929篇
  2006年   776篇
  2005年   758篇
  2004年   669篇
  2003年   638篇
  2002年   630篇
  2001年   111篇
  2000年   79篇
  1999年   103篇
  1998年   144篇
  1997年   90篇
  1996年   76篇
  1995年   71篇
  1994年   71篇
  1993年   71篇
  1992年   51篇
  1991年   47篇
  1990年   42篇
  1989年   26篇
  1988年   24篇
  1987年   22篇
  1986年   23篇
  1985年   15篇
  1984年   22篇
  1983年   19篇
  1982年   8篇
  1981年   17篇
  1980年   14篇
  1979年   10篇
  1978年   11篇
  1975年   8篇
  1971年   11篇
  1969年   8篇
  1966年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
161.
Ibe  Karin  Walmsley  David  Fichtner  Andreas  Coners  Heinz  Leuschner  Christoph  Härdtle  Werner 《Plant Ecology》2020,221(12):1219-1232

Climate change may alter microscale-effective ecosystem properties such as atmospheric water vapour pressure, but consequences for plant growth are insufficiently understood. Within a northwest German heathland an open-top chamber experiment was established to analyse the effects of elevated vapour pressure deficit (eVPD) on growth responses of Calluna vulgaris considering both plant origin (Atlantic (AP), sub-Atlantic (SAP), sub-Continental (SCP)) and life-history stage (1-year vs. 10-year old plants). We hypothesised that the plants’ sensitivity to eVPD decreases (i) from AP to SCP and (ii) with progressing life-history stage. Elevated VPD caused a provenance-specific decrease of shoot increment whilst aboveground biomass productivity remained unaffected. AP and SAP responded with increasing belowground biomass δ13C signatures to eVPD, whereas δ13C values decreased for SCP. Moreover, eVPD increased and decreased belowground biomass δ13C signatures of 1- and 10-year old plants, respectively. These responses to eVPD were related to differences in morphological-chemical traits and the plants’ trait plasticity in response to eVPD. SCP showed the highest aboveground tissue mass density and significantly increased tissue C:N ratios under eVPD. One-year old plants had a tenfold higher shoot:root ratio than 10-year old plants, making young plants more sensitive to eVPD. Our findings demonstrate that the atmospheric water status affects the morphology and physiology of Calluna independent of the soil water status. The results have implications for the conservation of heathlands under climate change: (i) SCP may constitute an appropriate ecotype for assisted migration-approaches, and (ii) management needs to weigh different options for heathland rejuvenation.

  相似文献   
162.
The host‐microbe relationship is pivotal for oral health as well as for peri‐implant diseases. Peri‐implant mucosa and commensal biofilm play important roles in the maintenance of host‐microbe homeostasis, but little is known about how they interact. We have therefore investigated the early host‐microbe interaction between commensal multispecies biofilm (Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar, Porphyromonas gingivalis) and organotypic peri‐implant mucosa using our three‐dimensional model. After 24 hr, biofilms induced weak inflammatory reaction in the peri‐implant mucosa by upregulation of five genes related to immune response and increased secretion of IL‐6 and CCL20. Biofilm volume was reduced which might be explained by secretion of β‐Defensins‐1, ‐2, and CCL20. The specific tissue reaction without intrinsic overreaction might contribute to intact mucosa. Thus, a relationship similar to homeostasis and oral health was established within the first 24 hr. In contrast, the mucosa was damaged and the bacterial distribution was altered after 48 hr. These were accompanied by an enhanced immune response with upregulation of additional inflammatory‐related genes and increased cytokine secretion. Thus, the homeostasis‐like relationship was disrupted. Such profound knowledge of the host‐microbe interaction at the peri‐implant site may provide the basis to improve strategies for prevention and therapy of peri‐implant diseases.  相似文献   
163.
164.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   
165.
Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business‐as‐usual representative concentration pathway (RCP) 8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end‐of‐century RCP8.5 conditions for temperature and pCO2 (3.5°C and 570 ppm above present‐day, respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral–dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business‐as‐usual CO2 emission scenarios will likely extirpate thermally sensitive coral species before the end of the century, while slowing the recovery of more thermally tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.  相似文献   
166.
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant‐centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be ‘limited’ by nutrients or carbon alone. Here, we outline how models aimed at predicting non‐steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant–microbe interactions in coupled carbon and nutrient models.  相似文献   
167.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.  相似文献   
168.
169.
Purpose

A review of LCA process datasets is an important element of quality assurance for databases and for other systems to provide LCA datasets. Somewhat surprisingly, a broadly accepted and applicable set of criteria for a review of LCA process datasets was lacking so far. Different LCA databases and frameworks are proposing and using different criteria for reviewing datasets. To close this gap, a set of criteria for reviewing LCA dataset has been developed within the Life Cycle Initiative.

Methods

Previous contributions to LCA dataset review have been analysed for a start, from ISO and various LCA databases. To avoid somewhat arbitrary review criteria, four basic rules are proposed which are to be fulfilled by any dataset. Further, concepts for assessing representativeness and relevance are introduced into the criteria set from established practices in statistics and materiality. To better structure the criteria and to ease their application, they are grouped into clusters. A first version of the developed review criteria was presented in two workshops with database providers and users on different levels of experience, and draft versions of the criteria were shared within the initiative. The current version of the criteria reflects feedback received from various stakeholders and has been applied and tested in a review for newly developed datasets in Brazil, Malaysia and Thailand.

Results and discussion

Overall, 14 criteria are proposed, which are organised in clusters. The clusters are goal, model, value, relevance and procedure. For several criteria, a more science-based definition and evaluation is proposed in comparison to ‘traditional’ LCA. While most of the criteria depend on the goal and scope of dataset development, a core set of criteria are seen as essential and independent from specific LCA modelling. For all the criteria, value scales are developed, typically using an ordinal scale, following the pedigree approach.

Conclusions

Review criteria for LCI datasets are now defined based on a stringent approach. They aim to be globally acceptable, considering also database interoperability and database management aspects, as well as feedback received from various stakeholders, and thus close an important gap in LCA dataset quality assurance. The criteria take many elements of already existing criteria but are the first to fully reflect the implications of the ISO data quality definition, and add new concepts for representativeness and relevance with the idea to better reflect scientific practice outside of the LCA domain. A first application in a review showed to be feasible, with a level of effort similar to applying other review criteria. Aspects not addressed yet are the review procedure and the mutual recognition of dataset reviews, and their application for a very high number of datasets.

  相似文献   
170.
Purpose

Access, affordability and sustainability of raw material supply chains are crucial to the sustainable development of the European Union (EU) for both society and economy. The study investigates whether and how the social life cycle assessment (S-LCA) methodology can support responsible sourcing of raw materials in Europe. The potential of social indicators already available in an S-LCA database is tested for the development of new metrics to monitor social risks in raw material industries at EU policy level.

Methods

The Product Social Impact Life Cycle Assessment (PSILCA) database was identified as a data and indicators source to assess social risks in raw material industries in EU-28 and extra-EU countries. Six raw material country sectors in the scope of the European policy on raw materials were identified and aggregated among those available in PSILCA. The selection of indicators for the assessment was based on the RACER (Relevance, Acceptance, Credibility, Ease, Robustness) analysis, leading to the proposal of 9 social impact categories. An S-LCA of the selected raw material industries was, thus, performed for the EU-28 region, followed by a contribution analysis to detect direct and indirect impacts and investigate related supply chains. Finally, the social performance of raw material sectors in EU-28 was compared with that of six extra-EU countries.

Results and discussion

Considering the overall social risks in raw material industries, “Corruption”, “Fair salary”, “Health and safety” and “Freedom of association and collective bargaining” emerged as the most significant categories both in EU and extra-EU. EU-28 shows an above-average performance where the only exception is represented by the mining and quarrying sector. An investigation of the most contributing processes to social impact categories for EU-28 led to the identification of important risks originating in the supply chain and in extra-EU areas. Therefore, the S-LCA methodology confirmed the potential of a life cycle perspective to detect burdens shifting and trade-offs. However, only a limited view on the sectoral social performance could be obtained from the research due to a lack of social data.

Conclusions

The S-LCA methodology and indicators appear appropriate to perform an initial social sustainability screening, thus enabling the identification of hotspots in raw material supply chains and the prioritization of areas of action in EU policies. Further methodological developments in the S-LCA field are necessary to make the approach proposed in the paper fully adequate to support EU policies on raw materials.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号