首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13310篇
  免费   1057篇
  国内免费   2篇
  2023年   58篇
  2022年   130篇
  2021年   272篇
  2020年   160篇
  2019年   192篇
  2018年   259篇
  2017年   253篇
  2016年   411篇
  2015年   666篇
  2014年   765篇
  2013年   923篇
  2012年   1253篇
  2011年   1160篇
  2010年   701篇
  2009年   620篇
  2008年   892篇
  2007年   929篇
  2006年   776篇
  2005年   757篇
  2004年   669篇
  2003年   638篇
  2002年   629篇
  2001年   107篇
  2000年   77篇
  1999年   104篇
  1998年   144篇
  1997年   88篇
  1996年   75篇
  1995年   70篇
  1994年   71篇
  1993年   71篇
  1992年   51篇
  1991年   47篇
  1990年   42篇
  1989年   26篇
  1988年   24篇
  1987年   23篇
  1986年   23篇
  1985年   15篇
  1984年   23篇
  1983年   20篇
  1982年   8篇
  1981年   17篇
  1980年   14篇
  1979年   10篇
  1978年   11篇
  1975年   8篇
  1971年   12篇
  1969年   8篇
  1966年   8篇
排序方式: 共有10000条查询结果,搜索用时 937 毫秒
281.

Aim

Our aim was to improve the prediction of Zn bioavailability to wheat grown on low-Zn soils. The classical approach that directly relates Zn in a certain soil extract to Zn uptake has been shown to be inadequate in many cases. We tested a stepwise approach where the steps of the uptake process are characterized with, respectively, Zn solid-solution distribution, adsorption of Zn to root surface, Zn uptake into root and Zn translocation to shoot.

Methods

Two pot experiments were done with wheat grown on nine low-Zn soils varying widely in pH, clay and organic matter content. Soluble Zn concentrations in two soil extracts (DTPA and CaCl2) were measured. Free Zn ion concentrations in CaCl2 soil extracts were determined with the Donnan Membrane Technique. These Zn concentrations were then related to plant Zn uptake following both the direct and the stepwise approach.

Results

In the direct approach, Zn in the DTPA extract was a better predictor for shoot Zn uptake than Zn in the CaCl2 extract. In the stepwise approach, the relationship between Zn in CaCl2 extracts and the root surface adsorbed Zn was pH-dependent and nonlinear. Root surface adsorbed Zn was linearly related to root Zn uptake, and the latter was linearly related to the shoot Zn uptake. The stepwise approach improved the Zn uptake prediction compared to the direct approach and was also validated for different wheat cultivars.

Conclusions

The adsorption of Zn on the root surface is pH dependent and nonlinear with respect to the soil Zn concentration, and a useful proxy for bioavailable Zn over a wide range of soils.  相似文献   
282.
While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.  相似文献   
283.
The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic 15N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with 15NO3/14NO3 from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r2 > 0.99). This consisted of a “substrate pool,” which received N from current uptake and supplied the growth zone, and a recycling/mobilizing “store,” which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.This article examines the nitrogen (N) supply system of growing grass leaves, and it investigates how functional and kinetic properties of this system are affected by N stress. The N supply of growing leaves is a dominant target of whole-plant N metabolism. This is primarily related to the high N demand of the photosynthetic apparatus and the related metabolic machinery of new leaves (Evans, 1989; Makino and Osmond, 1991; Grindlay, 1997; Lemaire, 1997; Wright et al., 2004; Johnson et al., 2010; Maire et al., 2012). The N supply system, as defined here, is an integral part of the whole plant: it includes all N compounds that supply leaf growth. Hence, it integrates all events between the uptake of N from the environment (source), intermediate uses in other processes of plant N metabolism, and the eventual delivery to the leaf growth zone (sink; Fig. 1). N that does not ultimately serve leaf growth is not included in this system; all N that serves leaf growth is included, irrespective of its localization in the plant. Conceptually, two distinct sources supply N for leaf growth: N from current uptake and assimilation that is directly transferred to the growing leaf (“directly transferred N”) and N from turnover/redistribution of organic compounds (“mobilized N”).Open in a separate windowFigure 1.Schematic representation of N fluxes in the leaf growth zone and in the N supply system of leaf growth in a grass plant. A, Scheme of a growing leaf, with its growth zone (including zones of cell division, expansion, and maturation) and recently produced tissue (RPT). N import (I; μg h−1) into the growth zone is mostly in the form of amino acids. Inside the growth zone, the nitrogenous substrate is used in new tissue construction. Then, N export (E; μg h−1) is in the form of newly formed, fully expanded nitrogenous tissue (tissue-bound export with RPT) and is calculated as leaf elongation rate (LER; mm h−1) times the lineal density of N in RPT (ρ; μg mm−1): E = LER × ρ (Lattanzi et al., 2004). In a physiological steady state, import equals export (I = E) and the N content of the growth zone (G; μg [not shown]) is constant. Labeled N import into the growth zone (Ilab) commences shortly after labeling of the nutrient solution with 15N. The labeled N content of the growth zone (Glab; μg) increases over time (dGlab/dt) until it eventually reaches isotopic saturation (Fig. 2B). Similarly, the lineal density of labeled N in RPTlab) increases until it approaches ρ. At any time, the export of labeled N in RPT (Elab) equals the concurrent ρlab × LER. The import of labeled N is obtained as Ilab = Elab + dGlab/dt (Lattanzi et al., 2005) and considers the increasing label content in the growth zone during labeling. The fraction of labeled N in the import flux (flab I) is calculated as flab I = Ilab/I. The time course of flab I (Fig. 3) reflects the kinetic properties of the N supply system of leaf growth (C). B, Scheme of a vegetative grass plant (reduced to a rooted tiller with three leaves) with leaf growth zone. N import into the growth zone (I) originates from (1) N taken up from the nutrient solution that is transferred directly to the growth zone following assimilation (directly transferred N) and (2) N derived from turnover/redistribution of stores (mobilized N). The store potentially includes proteins in all mature and senescing tissue in the shoot and root of the entire plant. As xylem, phloem, and associated transfer cells/tissue provide for a vascular network that connects all parts of the plant, the mobilized N may principally originate from any plant tissue that exhibits N turnover/mobilization. The fraction of total N uptake that is allocated to the N supply system of the growth zone equals U (see model in C). The fraction of total mobilized N allocated to the growth zone equals M (see model in C). C, Compartmental model of the source-sink system supplying N to the leaf growth zone, as shown by Lattanzi et al. (2005) and used here. Newly absorbed N (U; μg h−1) enters a substrate pool (Q1); from there, the N is either imported directly into the growth zone (I) or exchanged with a store (Q2). Q1 integrates the steps of transport and assimilation that precede the translocation to the growth zone. Q2 includes all proteins that supply N for leaf growth during their turnover and mobilization. The parameters of the model, including the (relative) size and turnover of pools Q1 and Q2, the deposition into the store (D; μg h−1), and the mobilization from the store (M; μg h−1), and the contribution of direct transfer relative to mobilization to the N supply of the growth zone are obtained by fitting the compartmental model to the flab I data (A) obtained in dynamic 15N labeling experiments (for details, see “Materials and Methods”). During physiological steady state, the sizes of Q1 and Q2 are constant, I = U, and M = D. [See online article for color version of this figure.]Amino acids are the predominant form in which N is supplied for leaf growth in grasses, and incorporation in new leaf tissue occurs mainly in the leaf growth zone (Gastal and Nelson, 1994; Amiard et al., 2004). This is a heterotrophic piece of tissue that includes the zones of cell division and elongation, is located at the base of the leaf, and is encircled by the sheath of the next older leaf (Volenec and Nelson, 1981; MacAdam et al., 1989; Schnyder et al., 1990; Kavanová et al., 2008). As most N is taken up in the form of nitrate but supplied to the growth zone in the form of amino acids, the path of directly transferred N includes a series of metabolic and transport steps. These include transfer to and loading into the xylem, xylem transport and unloading, reduction and ammonium assimilation, cycling through photorespiratory N pools, amino acid synthesis, loading into the phloem, and transport to the growth zone (Hirel and Lea, 2001; Novitskaya et al., 2002; Stitt et al., 2002; Lalonde et al., 2003; Dechorgnat et al., 2011). The time taken to pass through this sequence is unknown at present, as is the effect of N deficiency on that time. Also, it is not known how much N is contained in, and moving through, the different compartments that supply leaf growth with currently assimilated N.At the level of mature organs, mainly leaves, there is considerable knowledge about N turnover and redistribution. Much less is known about the fate of the mobilized N and its actual use in sink tissues like the leaf growth zone. The processes in mature organs are associated with the maintenance metabolism of proteins, organ senescence, and adjustments in leaf protein levels to decreasing irradiance inside growing canopies when leaves become shaded by overtopping newer ones (Evans, 1993; Vierstra, 1993; Hikosaka et al., 1994; Anten et al., 1995; Hirel et al., 2007; Jansson and Thomas, 2008; Moreau et al., 2012). N mobilization in shaded leaves supports the optimization of photosynthetic N use efficiency at plant and canopy scale (Field, 1983; Evans, 1993; Anten et al., 1995), it reduces the respiratory burden of protein maintenance costs (Dewar et al., 1998; Amthor, 2000; Cannell and Thornley, 2000), and it provides a mechanism for the conservation of the most frequently growth-limiting nutrient (Aerts, 1996). Mobilization of N involves protein turnover and net degradation (Huffaker and Peterson, 1974), redistribution in the form of amino acids (Simpson and Dalling, 1981; Simpson et al., 1983; Hörtensteiner and Feller, 2002), and (at least) some of the mobilized N is supplied to new leaf growth (Lattanzi et al., 2005).N fertilizer supply has multiple direct and indirect effects on plant N metabolism (Stitt et al., 2002; Schlüter et al., 2012). In particular, it modifies the N content of newly produced leaves, leaf longevity/senescence, and the dynamics of light distribution inside expanding canopies (Evans, 1983, 1989; Lötscher et al., 2003; Moreau et al., 2012). Thus, N fertilization influences the availability of recyclable N. At the same time, it augments the availability of directly transferable N to leaf growth. The net effect of these factors on the importance of mobilized versus directly transferred N substrate for leaf growth is not known. Also, it is unknown how N fertilization influences the functional characteristics of the N supply system, such as the size and turnover of its component pools.The assessment of the importance of directly transferred versus mobilized N for leaf growth requires studies at the sink end of the system (i.e. investigations of the N import flux into the leaf growth zone). Directly transferred N and mobilized N can be distinguished on the basis of their residence time in the plant, the time between uptake from the environment and import into the leaf growth zone: direct transfer involves a short residence time (fast transfer), whereas mobilized N resides much longer in the plant before it is delivered to the growth zone (slow transfer; De Visser et al., 1997; Lattanzi et al., 2005). Such studies require dynamic labeling of the N taken up by the plant (Schnyder and de Visser, 1999) and monitoring of the rate and isotopic composition/label content of N import into the leaf growth zone (Lattanzi et al., 2005). For grass plants in a physiological steady state, N import and the isotopic composition of the imported N are calculated from the leaf elongation rate and the lineal density of N in newly formed tissue (Fig. 1A; Lattanzi et al., 2004) and the change of tracer content in the leaf growth zone and recently produced leaf tissue over time (Lattanzi et al., 2005). Such data reveal the temporal change of the fraction of labeled N in the N import flux (flab I), which then can be used to characterize the N supply system of leaf growth via compartmental modeling. So far, there is only one study that has partially characterized this system (Lattanzi et al., 2005): this work was conducted with a C3 grass, perennial ryegrass (Lolium perenne), and a C4 grass, Paspalum dilatatum, growing in mixed stands and indicated that two interconnected N pools supplied the leaf growth zone in both species: a “substrate pool” (Q1), which provided a direct route for newly absorbed and assimilated N import into the leaf growth zone (directly transferred N), and a mobilizing “store” (Q2), which supplied N to the leaf growth zone via the substrate pool (Fig. 1C). The relative contribution of mobilization from the store was least important in the fast-growing, dominant individuals and most important in subordinate, shaded individuals. That work did not address the role of N deficiency, and the limited short-term resolution of the study (labeling intervals of 24 h or greater) precluded an analysis of the fast-moving parts of the system.Accordingly, this work addresses the following questions. How does N deficiency influence the substrate supply system of the leaf growth sink in terms of the number, size, and turnover (half-life) of its kinetically distinct pools? How does N deficiency affect the relationship between directly transferred and mobilized N for leaf growth? And what additional insight on the compartmental structure of the supply system is obtained when the short-term resolution of the analysis is increased by 1 order of magnitude? The work was performed with vegetative plants of perennial ryegrass grown in constant conditions with either a low (1.0 mm; termed low N) or high (7.5 mm; high N) nitrate concentration in the nutrient solution. In both treatments, a large number of plants were dynamically labeled with 15N over a wide range of time intervals (2 h to more than 20 d). The import of total N and 15N tracer into growth zones was estimated at the end of each labeling interval. Tracer data were analyzed with compartmental models following principles detailed by Lattanzi et al. (2005, 2012) and Lehmeier et al. (2008) to address the specific questions. Previous articles reported on root and shoot respiration (Lehmeier et al., 2010) and cell division and expansion in leaf growth zones (Kavanová et al., 2008) in the same experiment.  相似文献   
284.
For prey, many behavioural traits are constrained by the risk of predation. Therefore, shifts between warning and cryptic coloration have been suggested to result in parallel changes in several behaviours. In the present study, we tested whether changes in chromatic contrast among eight populations of the strawberry poison‐dart frog, Dendrobates pumilio, co‐vary with behaviour, as expected if selection is imposed by predators relying on visual detection of prey. These eight populations are geographically isolated on different island in the Bocas del Toro region of Panama and have recently diverged morphologically and genetically. We found that aggression and explorative behaviour were strongly correlated and also that males tended to be more aggressive and explorative if they belonged to populations with conspicuously coloured individuals. We discuss how evolutionary switches between predator avoidance strategies and associated behavioural divergence between populations may affect reproductive isolation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   
285.
Understanding of the genetic basis of physiological properties, which are most relevant to water-deficit tolerance would be helpful for genomic-assisted improvement of bread wheat. A set of bread wheat inter-varietal single chromosome substitution lines (ISCSLs) of variety ‘Janetzkis Probat’ (JP) in the genetic background of ‘Saratovskaya’ 29 (S29) were used to reveal the critical chromosomes in wheat genome controlling tolerance to water deficit. The same lines were involved in the identification of chromosomes associated with the activity of antioxidant enzymes that are closely related to the detoxification of H2O2 [catalase (CAT), ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase (GR)]. The recipient cultivar S29 was highly drought tolerant while the donor JP was sensitive. Using non-metric multidimensional scaling of yield components and indices of drought tolerance/susceptibility chromosomes 2A and 4D, substitution in the genetic background of S29 was found to lead to a critical decrease of water-deficit tolerance. The drop of tolerance correlated with a sharp decline of cumulative activity of the catalase and the enzymes of ascorbate–glutathione cycle in wheat leaves. Clear evidence was obtained for the involvement of genes present on the homoeologous group 2 chromosomes in the control of GR and CAT activity. Substitution of the chromosome 4D had a significant reducing impact on the CAT activity level.  相似文献   
286.
This article examines Greek-Cypriot teachers' constructions of Turkish-speaking children's identities in the Greek-Cypriot educational system. Drawing on interviews and classroom observations from a two-year ethnographic study conducted in three primary schools in the Republic of Cyprus, the author explores how Turkish-speaking children enrolled in these schools are racialized, ethnicized and classed within the dominant discourse of Greek-Cypriot teachers. The article discusses how the homogenized perceptions expressed by the majority of participating teachers in this study are illustrative of structural racism that reinforces these constructions in teaching practices. Yet, at the same time, resistance is present in the discourse and practice of a few teachers; this resistance is expressed through a counter-positioning of the ‘normal/ized’ identities of Turkish-speaking children. The author argues that without structural transformation, the fact and practice of racism/nationalism/classism will go unaltered in schools.  相似文献   
287.
This article offers a new taxonomy of how actors may change ethnic boundaries. I distinguish between five main strategies: to redraw a boundary by either expanding or limiting the domain of people included in one's own ethnic category; to modify existing boundaries by challenging the hierarchical ordering of ethnic categories, or by changing one's own position within a boundary system, or by emphasizing other, non-ethnic forms of belonging. The taxonomy claims to be exhaustive and accommodates a considerable number of historical and contemporary cases both from the developed and the developing world. It aims at overcoming the fragmentation of the literature along disciplinary and sub-disciplinary lines and prepares the ground for an agency-based comparative model of ethnic boundary making.  相似文献   
288.
Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. Recent investigations showed that another characteristic feature of cold seeps is the occurrence of methanotrophic archaea, which can be identified by specific biomarker lipids and 16S rDNA analysis. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH), bacterial production, enzyme activity, and sulfate reduction rates. Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6 2 10 10 cells cm m 3 ) and sulfate reduction rates (up to 8 w mol cm m 3 d m 1 ) in hydrate-bearing sediments, as well as a high bacterial diversity, especially in the group of i -proteobacteria including members of the branches Desulfosarcina/Desulfococcus , Desulforhopalus , Desulfobulbus , and Desulfocapsa . Most of the diversity of sulfate-reducing bacteria in hydrate-bearing sediments comprises seep-endemic clades, which share only low similarities with previously cultured bacteria.  相似文献   
289.
290.
Covalently linked carboxyl-terminal segments of the β-amyloid peptide (Aβ) were tested for their qualification as minimal conformational epitopes of the naturally occurring human autoantibodies against β-amyloid (nAbs-Aβ). nAbs-Aβ specifically recognize the toxic oligomers of Aβ and not the monomeric or the fibrillar forms of Aβ. The synthetic dimers of Aβ(28–40) described herein mimic the toxic Aβ oligomers but are not kinetic intermediates with uncertain compositions. CD spectra identified a surprisingly rich conformational behavior of selected miniamyloids. We observed a highly cooperative conformational transition of β-sheet to α-helix upon the addition of the helix enforcing co-solvent hexafluoroisopropanol. The CD curves of dimer 9 resembled, in a completely reversible manner, the CD spectra measured during the irreversible fibrillation of the parent Aβ(1–40). Synthetic peptide epitopes with high affinities for nAbs-Aβ are needed to identify the physiological roles of nAbs-Aβ and are promising epitopes for vaccination experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号