全文获取类型
收费全文 | 13353篇 |
免费 | 1057篇 |
国内免费 | 2篇 |
专业分类
14412篇 |
出版年
2023年 | 69篇 |
2022年 | 156篇 |
2021年 | 270篇 |
2020年 | 160篇 |
2019年 | 192篇 |
2018年 | 259篇 |
2017年 | 253篇 |
2016年 | 411篇 |
2015年 | 666篇 |
2014年 | 766篇 |
2013年 | 925篇 |
2012年 | 1255篇 |
2011年 | 1160篇 |
2010年 | 701篇 |
2009年 | 620篇 |
2008年 | 893篇 |
2007年 | 930篇 |
2006年 | 777篇 |
2005年 | 759篇 |
2004年 | 669篇 |
2003年 | 639篇 |
2002年 | 629篇 |
2001年 | 107篇 |
2000年 | 78篇 |
1999年 | 104篇 |
1998年 | 144篇 |
1997年 | 88篇 |
1996年 | 75篇 |
1995年 | 70篇 |
1994年 | 71篇 |
1993年 | 71篇 |
1992年 | 51篇 |
1991年 | 47篇 |
1990年 | 42篇 |
1989年 | 26篇 |
1988年 | 24篇 |
1987年 | 22篇 |
1986年 | 23篇 |
1985年 | 15篇 |
1984年 | 22篇 |
1983年 | 19篇 |
1982年 | 8篇 |
1981年 | 17篇 |
1980年 | 14篇 |
1979年 | 10篇 |
1978年 | 11篇 |
1975年 | 8篇 |
1971年 | 11篇 |
1969年 | 8篇 |
1966年 | 8篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
53.
Andreas Birbach Emilio Casanova Johannes A. Schmid 《Genesis (New York, N.Y. : 2000)》2009,47(11):757-764
Tissue‐specific transgene expression in the prostate epithelium has previously been achieved using short prostate‐specific promoters, rendering transgenic mouse lines susceptible to integration site‐dependent effects. Here we demonstrate the applicability of bacterial artificial chromosome (BAC) technology to transgene expression in the prostate epithelium. We present mouse lines expressing an inducible Cre protein (MerCreMer) under the control of regulatory elements of the probasin gene on a BAC. These mouse lines show high organ specificity, high transgene expression in anterior, dorsal and lateral prostate lobes, no background Cre recombination using a reporter strain and adjustable amounts of Cre‐induced recombination upon tamoxifen induction. Together with two recently reported transgenic lines expressing the Cre‐ERT2 protein from small prostate‐specific promoters, these mouse lines will be useful in research focused on prostate‐specific disorders such as benign hyperplasia or cancer. genesis 47:757–764, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
54.
Heidi G. Møller Andreas P. Rasmussen Hjalte H. Andersen Kasper B. Johnsen Michael Henriksen Meg Duroux 《Molecular neurobiology》2013,47(1):131-144
Glioblastoma multiforme (GBM) is an incurable form of brain cancer with a very poor prognosis. Because of its highly invasive nature, it is impossible to remove all tumor cells during surgical resection, making relapse inevitable. Further research into the regulatory mechanism underpinning GBM pathogenesis is therefore warranted, and over the past decade, there has been an increased focus on the functional role of microRNA (miRNA). This systematic review aims to present a comprehensive overview of all the available literature on the expression profiles and function of miRNA in GBM. Here, we have reviewed 163 papers and identified 253 upregulated, 95 downregulated, and 17 disputed miRNAs with respect to expression levels; 85 % of these miRNAs have not yet been functionally characterized. A focus in this study has been 26 interesting miRNAs involved in the mesenchymal mode of migration and invasion, demonstrating the importance of miRNAs in the context of the cellular niche. Both oncogenic and tumor-suppressive miRNAs were found to affect target genes involved in cell migration, cytoskeletal rearrangement, invasiveness, and angiogenesis. Clearly, the distinct functional properties of these miRNAs need further investigation and might hold a great potential in future molecular therapies targeting GBM. 相似文献
55.
We compared the expression of a functional recombinant TMVspecific fullsize antibody (rAb29) in both the apoplast and cytosol of tobacco plants and a single chain antibody fragment (scFv29), derived from rAb29, was expressed in the cytosol. Cloned heavy and light chain cDNAs of fullsize rAb29, which binds to TMV coat protein monomers, were integrated into the plant expression vector pSS. The fullsize rAb29 was expressed in the cytosol and targeted to the apoplast by including the original murine antibody leader sequences. Levels of functional fullsize rAb29 expression were high in the apoplast (up to 8.5g per gram leaf tissue), whereas cytosolic expression was low or at the ELISA detection limit. Sequences of the variable domains of rAb29 light and heavy chain were used to generate the single chain antibody scFv29, which was expressed in the periplasmic space of E.coli and showed the same binding specificity as fullsize rAb29. In addition, scFv29 was functionally expressed in the cytosol of tobacco plants and plant derived scFv29 maintained same binding specificity to TMVcoat protein monomers as rAb29. 相似文献
56.
Deborah Schmitz Jan W. Robering Volker Weisbach Andreas Arkudas Ingo Ludolph Raymund E. Horch Anja M. Boos Annika KengelbachWeigand 《Journal of cellular and molecular medicine》2022,26(16):4463
Adipose‐derived stromal cells (ADSC) are increasingly used in clinical applications due to their regenerative capabilities. However, ADSC therapies show variable results. This study analysed the effects of specific factors of ex‐obese patients on ADSC functions. ADSC were harvested from abdominal tissues (N = 20) after massive weight loss. Patients were grouped according to age, sex, current and maximum body mass index (BMI), BMI difference, weight loss method, smoking and infection at the surgical site. ADSC surface markers, viability, migration, transmigration, sprouting, differentiation potential, cytokine secretion, telomere length and mtDNA copy number were analysed. All ADSC expressed CD73, CD90, CD105, while functional properties differed significantly among patients. A high BMI difference due to massive weight loss was negatively correlated with ADSC proliferation, migration and transmigration, while age, sex or weight loss method had a smaller effect. ADSC from female and younger donors and individuals after weight loss by increase of exercise and diet change had a higher activity. Telomere length, mtDNA copy number, differentiation potential and the secretome did not correlate with patient factors or cell function. Therefore, we suggest that factors such as age, sex, increase of exercise and especially weight loss should be considered for patient selection and planning of regenerative therapies. 相似文献
57.
TGF-beta and the regulation of neuron survival and death. 总被引:5,自引:0,他引:5
Kerstin Krieglstein Jens Strelau Andreas Schober Aideen Sullivan Klaus Unsicker 《Journal of Physiology》2002,96(1-2):25-30
Transforming growth factor-betas (TGF-betas) constitute a superfamily of multifunctional cytokines with important implications in morphogenesis, cell differentiation, and tissue remodeling. In the developing nervous system, TGF-beta2 and -beta3 occur in radial and astroglial cells as well as in many populations of postmitotic, differentiating neurons. TGF-beta1 is restricted to the choroid plexus and meninges. In addition to functions related to glial cell maturation and performances, TGF-beta2 and -beta3 are important regulators of neuron survival. In contrast to neurotrophic factors, as for example, neurotrophins, TGF-betas are most likely not neurotrophic by themselves. However, they can dramatically increase the potency of select neurotrophins, fibroblast growth factor-2, ciliary neurotrophic factor, and glial cell line-derived neurotrophic factor (GDNF). In the case of GDNF, we have shown that GDNF fails to promote the survival of highly purified neuron populations in vitro unless it is supplemented with TGF-beta. This also applies to the in vivo situation, where antibodies to all three TGF-beta isoforms fully prevent the trophic effect of GDNF on axotomized, target-deprived neurons. In addition to the TGF-beta isoforms -beta2 and -beta3, other members of the TGF-beta superfamily are expressed in the nervous system having important roles in embryonic patterning, cell migration, and neuronal transmitter determination. We have cloned and expressed a novel TGF-beta, named growth/differentiation factor-15 (GDF-15). GDF-15 is synthesized in the choroid plexus and released into the CSF, but also occurs in all regions investigated of the developing and adult brain. GDF-15 is a potent trophic factor for developing and 6-OHDA-lesioned midbrain dopaminergic neurons in vitro and in vivo, matching the potency of GDNF. 相似文献
58.
Huber M Bahr I Krätzschmar JR Becker A Müller EC Donner P Pohlenz HD Schneider MR Sommer A 《Molecular & cellular proteomics : MCP》2004,3(1):43-55
In search of novel mechanisms leading to the development of antiestrogen-resistance in human breast tumors, we analyzed differences in the gene and protein expression pattern of the human breast carcinoma cell line T47D and its derivative T47D-r, which is resistant toward the pure antiestrogen ZM 182780 (Faslodex trade mark, fulvestrant). Affymetrix DNA chip hybridizations on the commercially available HuGeneFL and Hu95A arrays were carried out in parallel to the proteomics analysis where the total cellular protein content of T47D or T47D-r was separated on two-dimensional gels. Thirty-eight proteins were found to be reproducibly up- or down-regulated more than 2-fold in T47D-r versus T47D in the proteomics analysis. Comparison with differential mRNA analysis revealed that 19 of these were up- or down-regulated in parallel with the corresponding mRNA molecules, among which are the protease cathepsin D, the GTPases Rab11a and MxA, and the secreted protein hAG-2. For 11 proteins, the corresponding mRNA was not found to be differentially expressed, and for eight proteins an inverse regulation was found at the mRNA level. In summary, mRNA expression data, when combined with proteomic information, provide a more detailed picture of how breast cancer cells are altered in their antiestrogen-resistant compared with the antiestrogen-sensitive state. 相似文献
59.
Peinelt C Vig M Koomoa DL Beck A Nadler MJ Koblan-Huberson M Lis A Fleig A Penner R Kinet JP 《Nature cell biology》2006,8(7):771-773
Depletion of intracellular calcium stores activates store-operated calcium entry across the plasma membrane in many cells. STIM1, the putative calcium sensor in the endoplasmic reticulum, and the calcium release-activated calcium (CRAC) modulator CRACM1 (also known as Orai1) in the plasma membrane have recently been shown to be essential for controlling the store-operated CRAC current (I(CRAC)). However, individual overexpression of either protein fails to significantly amplify I(CRAC). Here, we show that STIM1 and CRACM1 interact functionally. Overexpression of both proteins greatly potentiates I(CRAC), suggesting that STIM1 and CRACM1 mutually limit store-operated currents and that CRACM1 may be the long-sought CRAC channel. 相似文献
60.
A number of hypotheses have been presented regarding the originsof the metazoans and, more specifically, the Bilateria. Usingvarious phylogenetic analyses, characteristics have been mappedon phylogenetic trees to infer ancestral body plans and lifehistory strategies of those ancestors. Many arguments on theevolution of the Bilateria are based on the presumed homologyof certain characteristics of extant larva and adults, includingvarious ciliated bands involved in feeding and locomotion. Thisarticle considers a recent study indicating that the second,downstream-collecting, ciliated band in the veliger larva ofthe gastropod mollusc, Crepidula fornicata, is actually derivedfrom secondary trochoblasts (derived from second quartet micromeres),that normally form part of the prototrochal band found in otherspiralian phyla (Hejnol et al. 2007). Despite previous arguments,these new findings suggest that the second ciliated band inthe veliger larva is not homologous to the metatroch found inthe trochophore larva of some other spiralians, such as theannelid, Polygordius lacteus. In the latter case, the metatrochwas reported to be formed by a different set of lineage precursors(derived from third quartet micromeres) (Woltereck 1904). Thesefindings have important implications for the interpretationof various hypotheses related to the evolution of metazoan phyla. 相似文献