The authors monitored five maternity colonies of Plecotus austriacus to obtain data about phenology, roosting, and emergence behaviour. The bats occupied their roosts between April and October, with maximum colony sizes in August. Roosting sites in the attic’s roof ridge and temperatures of 20–25°C were favoured. Also considering the small colony (maximum 59) and cluster sizes (maximum 13 bats), P. austriacus behaved less thermophilic than other attic-dwelling species. During low temperatures, the bats chose small crevice-like roosting sites to compensate for that; during daytime, many bats remained hidden in crevices. Emergence began approximately 30 min after sunset; the bats used multiple, preferably crevice-like openings. P. austriacus left its summer roosts comparatively late; renovation works should, therefore, not start before November. For monitoring purposes, we recommend two to three emergence countings outside the attics in early August during warm weather, alongside two attic inspections 1–2 h before emergence for offspring monitoring.
The in vivo behavior of shell cross-linked knedel-like (SCK) nanoparticles is shown to be tunable via a straightforward and versatile process that advances SCKs as attractive nanoscale carriers in the field of nanomedicine. Tuning of the pharmacokinetics was accomplished by grafting varied numbers of methoxy-terminated poly(ethylene glycol) (mPEG) chains to the amphiphilic block copolymer precursors, together with chelators for the radioactive tracer and therapeutic agent (64)Cu, followed by self-assembly into block copolymer micelles and chemical cross-linking throughout the shell regions. (64)Cu-radiolabeling was then performed to evaluate the SCKs in vivo by means of biodistribution experiments and positron emission tomography (PET). It was found that the blood retention of PEGylated SCKs could be tuned, depending on the mPEG grafting density and the nanoparticle surface properties. A semiquantitative model of the density of mPEG surface coverage as a function of in vivo behavior was applied to enhance the understanding of this system. 相似文献
Adipose‐derived stromal cells (ADSC) are increasingly used in clinical applications due to their regenerative capabilities. However, ADSC therapies show variable results. This study analysed the effects of specific factors of ex‐obese patients on ADSC functions. ADSC were harvested from abdominal tissues (N = 20) after massive weight loss. Patients were grouped according to age, sex, current and maximum body mass index (BMI), BMI difference, weight loss method, smoking and infection at the surgical site. ADSC surface markers, viability, migration, transmigration, sprouting, differentiation potential, cytokine secretion, telomere length and mtDNA copy number were analysed. All ADSC expressed CD73, CD90, CD105, while functional properties differed significantly among patients. A high BMI difference due to massive weight loss was negatively correlated with ADSC proliferation, migration and transmigration, while age, sex or weight loss method had a smaller effect. ADSC from female and younger donors and individuals after weight loss by increase of exercise and diet change had a higher activity. Telomere length, mtDNA copy number, differentiation potential and the secretome did not correlate with patient factors or cell function. Therefore, we suggest that factors such as age, sex, increase of exercise and especially weight loss should be considered for patient selection and planning of regenerative therapies. 相似文献
Plasma blasts formed during memory immune responses emigrate from the spleen to migrate into the bone marrow and into chronically inflamed tissues where they differentiate into long-lived plasma cells. In this study, we analyze the chemokine responsiveness of plasma blasts formed after secondary immunization with OVA. Starting from day 4 and within approximately 48 h, OVA-specific plasma blasts emigrate from spleen and appear in the bone marrow. Although these migratory cells have lost their responsiveness to many B cell attracting chemokines, e.g., CXC chemokine ligand (CXCL)13 (B lymphocyte chemoattractant), they migrate toward CXCL12 (stromal cell-derived factor 1 alpha), and toward the inflammatory chemokines CXCL9 (monokine induced by IFN-gamma), CXCL10 (IFN-gamma-inducible protein 10), and CXCL11 (IFN-inducible T cell alpha chemoattractant). However, the responsiveness of plasma blasts to these chemokines is restricted to a few days after their emigration from the spleen, indicating a role for these molecules and their cognate receptors, i.e., CXCR3 and CXCR4, in the regulation of plasma blast migration into the bone marrow and/or inflamed tissues. 相似文献
Thrombomodulin is a membrane-bound protein that plays an active role in the blood coagulation system by binding thrombin and initiating the protein C anticoagulant pathway. Solulin™ is a recombinant soluble derivative of human thrombomodulin. It is used for the treatment of thrombotic disorders. To evaluate the production of this pharmaceutical protein in plants, expression vectors were generated using four different N-terminal signal peptides. Immunoblot analysis of transiently transformed tobacco leaves showed that intact Solulin™ could be detected using three of these signal peptides. Furthermore transgenic tobacco plants and BY2 cells producing Solulin™ were generated. Immunoblot experiments showed that Solulin™ accumulated to maximum levels of 115 and 27 μg g−1 plant material in tobacco plants and BY2 cells, respectively. Activity tests performed on the culture supernatant of transformed BY2 cells showed that the secreted Solulin™ was functional. In contrast, thrombomodulin activity was not detected in total soluble protein extracts from BY2 cells, probably due to inhibitory effects of substances in the cell extract. N-terminal sequencing was carried out on partially purified Solulin™ from the BY2 culture supernatant. The sequence was identical to that of Solulin™ produced in Chinese hamster ovary cells, confirming correct processing of the N-terminal signal peptide. We have demonstrated that plants and plant cell cultures can be used as alternative systems for the production of an active recombinant thrombomodulin derivative. 相似文献
Hypertrehalosaemic hormones stimulate trehalogenesis while inhibiting glycolysis in cockroach fat body. Signal transduction
of the hypertrehalosaemic peptide Bld HrTH was examined in isolated fat body of the Argentine cockroach Blaptica dubia with respect to its effects on the increase in trehalose production and decrease in the content of the glycolytic activator
fructose 2,6-bisphosphate in the tissue. Cyclic AMP does not seem to be involved in these processes as the cAMP analogue cpt-cAMP
and the phosphodiesterase inhibitor IBMX, which both permeate cell membranes, had no effect on either parameter. Octopamine
at physiological concentrations (10−7 mol · l−1) was also ineffective, but at 10−5 mol · l−1 or above, octopamine stimulated trehalose production although the content of fructose 2,6-bisphosphate in fat body was not
affected. Both calcium entry and the release of Ca2+ from intracellular stores seem to be involved in the action of the hormone. If Ca2+ was omitted from the incubation medium, the hormone stimulated trehalose production less, though still significantly, whereas
the hormone effect on fructose 2,6-bisphosphate was completely abolished in the absence of extracellular Ca2+. With Ca2+ present in the medium, the effect of the hormone on fructose 2,6-bisphosphate could be fully mimicked by the calcium ionophore
A23187, suggesting that calcium entry is a␣decisive step in this signalling pathway. Trehalose production, on the other hand,
was increased by thimerosal and thapsigargin which increase cytosolic Ca2+ from intracellular stores, whereas thimerosal in the absence of extracellular Ca2+ increased rather than decreased the content of fructose 2,6-bisphosphate, thus dissociating the two effects, which are normally
coordinated by the hormone. Trehalose production and the content of fructose 2,6-bisphosphate were not significantly affected
by mepacrine and mellitin, which are known to inhibit, respectively stimulate, phospholipase A2. Our data suggest that the effects of Bld HrTH on the stimulation of trehalose production and reduction of fructose 2,6-bisphosphate
content in fat body are mediated by Ca2+, but that different signalling pathways are involved, suggesting that the two processes, although they are functionally linked,
could be regulated separately.
Accepted: 10 November 1997 相似文献
Complement inhibition is to a large extent achieved by proteolytic degradation of activated complement factors C3b and C4b by factor I (FI). This reaction requires a cofactor protein that binds C3b/C4b. We found that the cofactor activity of C4b-binding protein towards C4b/C3b and factor H towards C3b increase at micromolar concentrations of Zn(2+) and are abolished at 2 mM Zn(2+) and above. 65Zn(2+) bound to C3b and C4b molecules but not the cofactors or FI when they were immobilized in a native form on a nitrocellulose membrane. Zn(2+) binding constants for C3met (0.2 microM) and C4met (0.1 microM) were determined using fluorescent chelator. It appears that higher cofactor activity at low zinc concentrations is due to an increase of affinity between C4b/C3b and cofactor proteins as assessed by surface plasmon resonance. Inhibition of the reaction seen at higher concentrations is due to aggregation of C4b/C3b. 相似文献
Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicuml-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. 相似文献