首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13301篇
  免费   1057篇
  国内免费   2篇
  2023年   58篇
  2022年   128篇
  2021年   270篇
  2020年   160篇
  2019年   192篇
  2018年   259篇
  2017年   253篇
  2016年   411篇
  2015年   666篇
  2014年   766篇
  2013年   922篇
  2012年   1254篇
  2011年   1159篇
  2010年   701篇
  2009年   621篇
  2008年   892篇
  2007年   929篇
  2006年   776篇
  2005年   757篇
  2004年   669篇
  2003年   639篇
  2002年   629篇
  2001年   107篇
  2000年   77篇
  1999年   103篇
  1998年   144篇
  1997年   88篇
  1996年   75篇
  1995年   70篇
  1994年   71篇
  1993年   71篇
  1992年   51篇
  1991年   47篇
  1990年   42篇
  1989年   26篇
  1988年   24篇
  1987年   22篇
  1986年   23篇
  1985年   15篇
  1984年   22篇
  1983年   19篇
  1982年   8篇
  1981年   17篇
  1980年   14篇
  1979年   10篇
  1978年   11篇
  1975年   8篇
  1971年   11篇
  1969年   8篇
  1966年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
The first leaky auxotrophic mutant for aromatic amino acids of the near-diploid fungal plant pathogen Verticillium longisporum (VL) has been generated. VL enters its host Brassica napus through the roots and colonizes the xylem vessels. The xylem contains little nutrients including low concentrations of amino acids. We isolated the gene Vlaro2 encoding chorismate synthase by complementation of the corresponding yeast mutant strain. Chorismate synthase produces the first branch point intermediate of aromatic amino acid biosynthesis. A novel RNA-mediated gene silencing method reduced gene expression of both isogenes by 80% and resulted in a bradytrophic mutant, which is a leaky auxotroph due to impaired expression of chorismate synthase. In contrast to the wild type, silencing resulted in increased expression of the cross-pathway regulatory gene VlcpcA (similar to cpcA/GCN4) during saprotrophic life. The mutant fungus is still able to infect the host plant B. napus and the model Arabidopsis thaliana with reduced efficiency. VlcpcA expression is increased in planta in the mutant and the wild-type fungus. We assume that xylem colonization requires induction of the cross-pathway control, presumably because the fungus has to overcome imbalanced amino acid supply in the xylem.  相似文献   
862.
Abasic sites represent the most frequent DNA lesions in the genome that have high mutagenic potential and lead to mutations commonly found in human cancers. Although these lesions are devoid of the genetic information, adenine is most efficiently inserted when abasic sites are bypassed by DNA polymerases, a phenomenon termed A‐rule. In this study, we present X‐ray structures of a DNA polymerase caught while incorporating a nucleotide opposite an abasic site. We found that a functionally important tyrosine side chain directs for nucleotide incorporation rather than DNA. It fills the vacant space of the absent template nucleobase and thereby mimics a pyrimidine nucleobase directing for preferential purine incorporation opposite abasic residues because of enhanced geometric fit to the active site. This amino acid templating mechanism was corroborated by switching to pyrimidine specificity because of mutation of the templating tyrosine into tryptophan. The tyrosine is located in motif B and highly conserved throughout evolution from bacteria to humans indicating a general amino acid templating mechanism for bypass of non‐instructive lesions by DNA polymerases at least from this sequence family.  相似文献   
863.
Oligodendrocyte progenitor cells (OPCs) were first described more than two decades ago. Novel labeling techniques have shown them to be cells with more than just progenitor functions, with their classification as a fourth glial cell type in addition to astrocytes, oligodendrocytes, and microglial cells. Another term used for this cell type is polydendrocytes, owing to both their morphology and to the evolving knowledge about their diverse functions. Recently, an exclusive hallmark of neurons—the generation of action potentials—became debatable, because a subset of polydendrocytes was reported to generate action potentials in response to adequate stimuli. The new technique of inducible reporter gene expression has brought new insights into the fate and function of polydendrocytes. In recent studies, so-called “silenced” OPCs were detected in cortical tissue, and which underwent proliferation with subsequent cell cycle exit, but without any signs of differentiation. Within this review, we focus on the identification of this new subset of polydendrocytes and their possible functions within cortical networks.  相似文献   
864.
865.
Systematic tandem-affinity-purification (TAP) of protein complexes was tremendously successful in yeast and has changed the general concept of how we understand protein function in eukaryotic cells. The transfer of this method to other model organisms has been difficult and may require specific adaptations. We were especially interested to establish a cell-type-specific TAP system for Caenorhabditis elegans, a model animal well suited to high-throughput analysis, proteomics and systems biology. By combining the high-affinity interaction between in vivo biotinylated target-proteins and streptavidin with the usage of a newly identified epitope of the publicly shared SB1 monoclonal antibody we created a novel in vivo fluorescent tag, the SnAvi-Tag. We show the versatile application of the SnAvi-Tag in Escherichia coli, vertebrate cells and in C. elegans for tandem affinity purification of protein complexes, western blotting and also for the in vivo sub-cellular localization of labelled proteins.  相似文献   
866.
867.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   
868.
869.
Aims/Hypothesis: It was the aim to investigate the hypothesis that the new C1q/TNF-family member CTRP-3 (C1q/TNF-related protein-3) acts anti-inflammatory in human monocytes from healthy controls and patients with type 2 diabetes mellitus (T2D). Methods: Monocytes were isolated from 20 healthy controls and 30 patients with T2D. IL-6 and TNF concentrations were measured by ELISA. CTRP-3 was expressed in insect cells and used for stimulation experiments. Results: Basal IL-6 and TNF were not different in control and in T2D monocytes. LPS-stimulation (1 μg/ml) significantly (p < 0.001) increased IL-6 and TNF in the supernatants of control and in T2D monocytes to a similar extent. CTRP-3 (1 μg/ml) significantly (p = 0.03) inhibited LPS-induced IL-6 in control monocytes but not in T2D monocytes. TNF upon co-stimulation with LPS and CTRP-3 was significantly (p = 0.012) lower in control than in T2D monocytes. LPS-induced TNF concentration was significantly and positively correlated with serum total cholesterol and LDL cholesterol in T2D patients. Conclusions: CTRP-3 inhibits LPS-induced IL-6 and TNF release. This anti-inflammatory effect is lost in T2D. Serum cholesterol concentration affects the pro-inflammatory potential of LPS to induce TNF release from T2D monocytes in the presence or absence of CTRP-3. CTRP-3 might partly account for the pro-inflammatory state in T2D.  相似文献   
870.
Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9 Å), the plant aquaporin SoPIP2;1 (3.1 Å) and the human aquaporin-8 (hAQP8; 3.3 Å). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号