首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547532篇
  免费   56890篇
  国内免费   1158篇
  605580篇
  2018年   15051篇
  2017年   13701篇
  2016年   12791篇
  2015年   9339篇
  2014年   10115篇
  2013年   13968篇
  2012年   19910篇
  2011年   27964篇
  2010年   21654篇
  2009年   17354篇
  2008年   22893篇
  2007年   24832篇
  2006年   13162篇
  2005年   13199篇
  2004年   13279篇
  2003年   12780篇
  2002年   12056篇
  2001年   21959篇
  2000年   21975篇
  1999年   17505篇
  1998年   6359篇
  1997年   6568篇
  1996年   6375篇
  1995年   5761篇
  1994年   5819篇
  1993年   5664篇
  1992年   13713篇
  1991年   13038篇
  1990年   12688篇
  1989年   12526篇
  1988年   11198篇
  1987年   10814篇
  1986年   9891篇
  1985年   9661篇
  1984年   8206篇
  1983年   7103篇
  1982年   5529篇
  1981年   5017篇
  1980年   4663篇
  1979年   7690篇
  1978年   5925篇
  1977年   5428篇
  1976年   5067篇
  1975年   5373篇
  1974年   5810篇
  1973年   5661篇
  1972年   5324篇
  1971年   4997篇
  1970年   3928篇
  1969年   3858篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Chloroflexus aurantiacus can be induced to shift from respiratory to photosynthetic energy production by introducing light and/or lowering the oxygen concentration of a culture. After induction, cells synthesize bacteriochlorophyll and proteins for the formation of a functional photosynthetic apparatus. Bacteriochlorophyll is detectable within 2 h after induction. Chlorosome polypeptides are detected after 8–12 h. Two proteins, Mr 60,000 and Mr 47,000, are present in both induced and noninduced cells and react specifically with antibodies against chlorosome polypeptides. Immunological data suggest that these proteins (Mr 60,000 and 47,000) are polyproteins which are transcribed and translated in the dark. When cells are exposed to light or low oxygen tension these proteins are processed into functional polypeptides required in the assembly of the chlorosome. The reaction center polypeptide (Mr 26,000) appears to be part of a separate genetic control system.Dedicated to Prof. G. Drews on occasion of his 60th birthday  相似文献   
992.
A recombinant exoglucanase was expressed in Escherichia coli to a level that exceeded 20% of total cellular protein. To obtain this level of overproduction, the exoglucanase gene coding sequence was fused to a synthetic ribosome-binding site, an initiating ATG, and placed under the control of the leftward promoter of bacteriophage lambda contained on the runaway replication plasmid vector pCP3 (E. Remaut, H. Tsao, and W. Fiers, Gene 22:103-113, 1983). With the exception of an inserted asparagine adjacent to the initiating ATG, the highly expressed exoglucanase is identical to the native exoglucanase. The overproduced exoglucanase can be isolated easily in an enriched form as insoluble aggregates, and exoglucanase activity can be recovered by solubilization of the aggregates in 6 M urea or 5 M guanidine hydrochloride. Since the codon usage of the exoglucanase gene is so markedly different from that of E. coli genes, the overproduction of the exoglucanase in E. coli indicates that codon usage may not be a major barrier to heterospecific gene expression in this organism.  相似文献   
993.
994.
The interaction of several N-acetyl-d-glucosamine analogs and of sialyl lactose with the lectin wheat germ agglutinin was studied by nuclear magnetic resonance. N-2H3-acetyl-d-gluocosamine was synthesized and found to displace the N-acetyl methyl signal toward its free chemical shift in N-acetylglucosamine and N-acetylneuraminic acid demonstrating common binding sites for the latter two compounds. The N-acetyl methyl signal of the α-methylglucoside of N-acetylglucosamine could be titrated but a 3-deoxy analog could not, the latter exhibiting very weak binding and demonstrating the importance of the 3-OH group in the binding process. Sialyl lactose (an N-acetylneuraminic acid analog) was rather tightly bound to the lectin. N-F3-acetyl-d-glucosamine was synthesized and its binding to the lectin was studied at pH 4, 4.5, 5.1 by 19F NMR. The two anomers were found to bind with nearly equal Kd′s but exhibited a pH and anomer dependent Δ (total bound chemical shift). The -CF3 analog was found to bind considerably stronger to the lectin than the -CH3 compound. The clear resolution of the α and β anomers of this molecule make it a very useful probe of the lectin binding site.  相似文献   
995.
Summary Plant growth performance was studied in 118 potato monohaploids and in their diploid parents. Of these monohaploids 76 were also investigated at the protoplast level and eight of these were used in protoplast fusion experiments as well. No correlation was found between relative performance of greenhouse grown and in vitro grown plants. No or only weak correlations were found between different in vitro characteristics such as plant growth, protoplast yield per gram plant material, plating efficiency and callus growth. This indicates the unpredictability of these characters.The protoplast fusion experiments indicated that only in some genotype combinations increased callus growth rates may be found. However, it is not clear whether such calli were hybrids or not. In protoplast monocultures only diploid and tetraploid regenerants were obtained. After fusion, tetraploids but also some triploids could be regenerated. The finding of triploids indicates that monoploid protoplasts were involved in fusion. Isozyme analysis and morphological assessment of the plants pointed out that the majority of the fusion regenerants were hybrids. The implications of these results are discussed.  相似文献   
996.
To investigate the role of tissue oxygenation as one of the control factors regulating tissue respiration, 31P-nuclear magnetic resonance spectroscopy (31P-NMR) was used to estimate muscle metabolites in isolated working muscle during varied tissue oxygenation conditions. O2 delivery (muscle blood flow x arterial O2 content) was varied to isolated in situ working dog gastrocnemius (n = 6) by decreases in arterial PO2 (hypoxemia; H) and by decreases in muscle blood flow (ischemia; I). O2 uptake (VO2) was measured at rest and during work at two or three stimulation intensities (isometric twitch contractions at 3, 5, and occasionally 7 Hz) during three separate conditions: normal O2 delivery (C) and reduced O2 delivery during H and I, with blood flow controlled by pump perfusion. Biochemical metabolites were measured during the last 2 min of each 3-min work period by use of 31P-NMR, and arterial and venous blood samples were drawn and muscle blood flow measured during the last 30 s of each work period. Muscle [ATP] did not fall below resting values at any work intensity, even during O2-limited highly fatiguing work, and was never different among the three conditions. Muscle O2 delivery and VO2 were significantly less (P < 0.05) at the highest work intensities for both I and H than for C but were not different between H and I. As VO2 increased with stimulation intensity, a larger change in any of the proposed regulators of tissue respiration (ADP, P(i), ATP/ADP.P(i), and phosphocreatine) was required during H and I than during C to elicit a given VO2, but requirements were similar for H and I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
997.
24-Keto-1,25-dihydroxyvitamin D3 has been identified as an intestinal metabolite of 1,25-dihydroxyvitamin D3 by ultraviolet absorbance, mass spectroscopy, and chemical reactivity. The metabolite was produced from 1,25-dihydroxyvitamin D3 and 1,24R,25-trihydroxyvitamin D3 in rat intestinal mucosa homogenates. 24-Keto-1,25-dihydroxyvitamin D3 is present in vivo in the plasma and small intestinal mucosa of rats fed a stock diet, receiving no exogenous 1,25-dihydroxyvitamin D3, and in the plasma and small intestinal mucosa of rats dosed chronically with 1,25-dihydroxyvitamin D3. 24-Keto-1,25-dihydroxyvitamin D3 has affinity equivalent to 1,24R,25-trihydroxyvitamin D3 for the 3.7 S cytosolic receptor specific for 1,25-dihydroxyvitamin D3 in the intestine and thymus. In cytosolic preparations contaminated with the 5 S vitamin D-binding protein, both metabolites are about 7-fold less potent than 1,25-dihydroxyvitamin D3. In contrast, in cytosolic preparations largely free of the 5 S binding protein, both metabolites are equipotent with the parent compound. No evidence was obtained supporting a substantial presence of 23-keto-1,25-dihydroxyvitamin D3 in vivo; nor was the latter compound generated in detectable amounts from 1,25-dihydroxyvitamin D3 by intestinal homogenates. Thus, C-24 oxidation is a significant pathway of intestinal 1,25-dihydroxyvitamin D3 metabolism that produces metabolites with high affinity for the cytosolic receptor which mediates vitamin D action.  相似文献   
998.
999.
A C Newton  W H Huestis 《Biochemistry》1988,27(13):4655-4659
Band 3, the erythrocyte anion transporter, transfers spontaneously between human red cells and model membranes. During incubation of intact erythrocytes with sonicated dimyristoylphosphatidylcholine vesicles, the transporter inserts in functional form and native orientation into the liposome bilayer, with the cytoplasmic segment of the protein contacting the lumen of the vesicle [Newton, A. C., Cook, S. L., & Huestis, W. H. (1983) Biochemistry 22, 6110-6117; Huestis, W. H., & Newton, A. C. (1986) J. Biol. Chem. 261, 16274-16278]. When band 3-vesicle complexes are incubated with erythrocytes whose native band 3 has been inhibited irreversibly, reverse transfer of the protein restores anion transport capacity to the cells [Newton, A. C., Cook, S. L., & Huestis, W. H. (1983) Biochemistry 22, 6110-6117]. Here we report the vesicle-mediated transfer of band 3 to human peripheral blood lymphocytes and to cultured murine lymphoma cells (BL/VL3). Subsequent to incubation with protein-vesicle complexes, both lymphoid cell types exhibit a 2-4-fold increase in the rate of chloride uptake. This enhanced permeability is inhibited greater than or equal to 98% by the exofacial band 3 inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, consistent with right-side-out insertion of functional band 3 into the lymphoid cell membrane.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号