首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15645篇
  免费   1238篇
  国内免费   7篇
  16890篇
  2024年   24篇
  2023年   96篇
  2022年   247篇
  2021年   456篇
  2020年   242篇
  2019年   312篇
  2018年   420篇
  2017年   367篇
  2016年   598篇
  2015年   866篇
  2014年   946篇
  2013年   1116篇
  2012年   1434篇
  2011年   1421篇
  2010年   882篇
  2009年   676篇
  2008年   1039篇
  2007年   924篇
  2006年   894篇
  2005年   853篇
  2004年   742篇
  2003年   624篇
  2002年   616篇
  2001年   108篇
  2000年   76篇
  1999年   109篇
  1998年   131篇
  1997年   94篇
  1996年   71篇
  1995年   55篇
  1994年   52篇
  1993年   57篇
  1992年   47篇
  1991年   30篇
  1990年   41篇
  1989年   42篇
  1988年   16篇
  1987年   22篇
  1986年   16篇
  1985年   18篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   14篇
  1980年   13篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1975年   10篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
191.
N-terminal acetylation of proteins is a widespread and highly conserved process. Aminoacylase 1 (ACY1; EC 3.5.14) is the most abundant of the aminoacylases, a class of enzymes involved in hydrolysis of N-acetylated proteins. Here, we present four children with genetic deficiency of ACY1. They were identified through organic acid analyses using gas chromatography-mass spectrometry, revealing increased urinary excretion of several N-acetylated amino acids, including the derivatives of methionine, glutamic acid, alanine, leucine, glycine, valine, and isoleucine. Nuclear magnetic resonance spectroscopy analysis of urine samples detected a distinct pattern of N-acetylated metabolites, consistent with ACY1 dysfunction. Functional analyses of patients' lymphoblasts demonstrated ACY1 deficiency. Mutation analysis uncovered recessive loss-of-function or missense ACY1 mutations in all four individuals affected. We conclude that ACY1 mutations in these children led to functional ACY1 deficiency and excretion of N-acetylated amino acids. Questions remain, however, as to the clinical significance of ACY1 deficiency. The ACY1-deficient individuals were ascertained through urine metabolic screening because of unspecific psychomotor delay (one subject), psychomotor delay with atrophy of the vermis and syringomyelia (one subject), marked muscular hypotonia (one subject), and follow-up for early treated biotinidase deficiency and normal clinical findings (one subject). Because ACY1 is evolutionarily conserved in fish, frog, mouse, and human and is expressed in the central nervous system (CNS) in human, a role in CNS function or development is conceivable but has yet to be demonstrated. Thus, at this point, we cannot state whether ACY1 deficiency has pathogenic significance with pleiotropic clinical expression or is simply a biochemical variant. Awareness of this new genetic entity may help both in delineating its clinical significance and in avoiding erroneous diagnoses.  相似文献   
192.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.  相似文献   
193.
The blood-brain barrier contributes to maintain brain cholesterol metabolism and protects this uniquely balanced system from exchange with plasma lipoprotein cholesterol. Brain capillary endothelial cells, representing a physiological barrier to the central nervous system, express apolipoprotein A-I (apoA-I, the major high-density lipoprotein (HDL)-associated apolipoprotein), ATP-binding cassette transporter A1 (ABCA1), and scavenger receptor, class B, type I (SR-BI), proteins that promote cellular cholesterol mobilization. Liver X receptors (LXRs) and peroxisome-proliferator activated receptors (PPARs) are regulators of cholesterol transport, and activation of LXRs and PPARs has potential therapeutic implications for lipid-related neurodegenerative diseases. To clarify the functional impact of LXR/PPAR activation, sterol transport along the: (i) ABCA1/apoA-I and (ii) SR-BI/HDL pathway was investigated in primary, polarized brain capillary endothelial cells, an in vitro model of the blood-brain barrier. Activation of LXR (24(S)OH-cholesterol, TO901317), PPARalpha (bezafibrate, fenofibrate), and PPARgamma (troglitazone, pioglitazone) modulated expression of apoA-I, ABCA1, and SR-BI on mRNA and/or protein levels without compromising transendothelial electrical resistance or tight junction protein expression. LXR-agonists and troglitazone enhanced basolateral-to-apical cholesterol mobilization in the absence of exogenous sterol acceptors. Along with the induction of cell surface-located ABCA1, several agonists enhanced cholesterol mobilization in the presence of exogenous apoA-I, while efflux of 24(S)OH-cholesterol (the major brain cholesterol metabolite) in the presence of exogenous HDL remained unaffected. Summarizing, in cerebrovascular endothelial cells apoA-I, ABCA1, and SR-BI represent drug targets for LXR and PPAR-agonists to interfere with cholesterol homeostasis at the periphery of the central nervous system.  相似文献   
194.
Jorge Lobo’s disease (JLD) is a chronic infection that affects the skin and subcutaneous tissues. Its etiologic agent is the fungus Lacazia loboi. Lesions are classified as localized, multifocal, or disseminated, depending on their location. Early diagnosis and the surgical removal of lesions are the best therapeutic options currently available for JLD. The few studies that evaluate the immunological response of JLD patients show a predominance of Th2 response, as well as a high frequency of TGF-β and IL-10 positive cells in the lesions; however, the overall immunological status of the lesions in terms of their T cell phenotype has yet to be determined. Therefore, the objective of this study was to evaluate the pattern of Th1, Th2, Th17 and regulatory T cell (Treg) markers mRNA in JLD patients by means of real-time PCR. Biopsies of JLD lesions (N = 102) were classified according to their clinical and histopathological features and then analyzed using real-time PCR in order to determine the expression levels of TGF-β1, FoxP3, CTLA4, IKZF2, IL-10, T-bet, IFN-γ, GATA3, IL-4, IL-5, IL-13, IL-33, RORC, IL-17A, IL-17F, and IL-22 and to compare these levels to those of healthy control skin (N = 12). The results showed an increased expression of FoxP3, CTLA4, TGF-β1, IL-10, T-bet, IL-17F, and IL-17A in lesions, while GATA3 and IL-4 levels were found to be lower in diseased skin than in the control group. When the clinical forms were compared, TGF-β1 was found to be highly expressed in patients with a single localized lesion while IL-5 and IL-17A levels were higher in patients with multiple/disseminated lesions. These results demonstrate the occurrence of mixed T helper responses and suggest the dominance of regulatory T cell activity, which could inhibit Th-dependent protective responses to intracellular fungi such as L. loboi. Therefore, Tregs may play a key role in JLD pathogenesis.  相似文献   
195.
196.

Corrigendum

Use of gentian violet to differentiate in vitro and ex vitro- formed roots during acclimatization of grapevine  相似文献   
197.
The discovery of human obesity-associated genes can reveal new mechanisms to target for weight loss therapy. Genetic studies of obese individuals and the analysis of rare genetic variants can identify novel obesity-associated genes. However, establishing a functional relationship between these candidate genes and adiposity remains a significant challenge. We uncovered a large number of rare homozygous gene variants by exome sequencing of severely obese children, including those from consanguineous families. By assessing the function of these genes in vivo in Drosophila, we identified 4 genes, not previously linked to human obesity, that regulate adiposity (itpr, dachsous, calpA, and sdk). Dachsous is a transmembrane protein upstream of the Hippo signalling pathway. We found that 3 further members of the Hippo pathway, fat, four-jointed, and hippo, also regulate adiposity and that they act in neurons, rather than in adipose tissue (fat body). Screening Hippo pathway genes in larger human cohorts revealed rare variants in TAOK2 associated with human obesity. Knockdown of Drosophila tao increased adiposity in vivo demonstrating the strength of our approach in predicting novel human obesity genes and signalling pathways and their site of action.

This study set out to identify novel gene variants that may contribute to human obesity, by combining human exosome sequencing analyses with systematic functional screening in Drosophila. This identifies a number of novel obesity-associated genes which control adiposity in flies, and uncovers a potential role for the Hippo signaling pathway in obesity.

Obesity is a major risk factor for type 2 diabetes, cardiovascular disease, cancers, and, most recently, COVID-19 [1]. Despite the obvious environmental drivers to weight gain, multiple genetic studies have demonstrated that 40% to 70% of the variation in body weight is attributable to genetic variation [2]. The discovery of genes that contribute to the regulation of human body weight can provide insights into the mechanisms involved in energy homeostasis and identify potential targets for weight loss therapy. Moreover, drug targets supported by human genetic evidence are more likely to transit successfully through the drug discovery pipeline [3].A classical approach to the discovery of pathogenic variants is to investigate consanguineous populations with high degrees of parental relatedness (parents who are first or second cousins) where large portions of the genome are identical by descent as a result of family structure in preceding generations (long regions of homozygosity). Indeed, studies in consanguineous families led to the discovery of the first homozygous loss-of-function mutations in the genes encoding leptin (LEP; [4]) and the leptin receptor (LEPR; [5]) associated with severe obesity. However, at the time, the function of leptin and its receptor had already been established in ob/ob and db/db mice, respectively [6], so the pathogenicity of homozygous mutations that resulted in loss of function in cells was readily established.The situation is more complex when studying homozygous mutations in new candidate genes. Some of these genes may play a direct causal role in the development of obesity, others may increase susceptibility to obesity only in certain contexts, and some genes will play no role at all. Recent large-scale studies in healthy people in outbred populations have revealed that a significant proportion of rare homozygous variants that are predicted to cause a loss of function do not result in a clinically discernible phenotype [7,8]. As such, identifying the subset of genes that may be involved in the regulation of adiposity in large human genetic studies presents a major hurdle.For some diseases, functional screens in cultured cells permit rapid testing of candidate genes, as exemplified by studies of insulin secretion in islet cells for genes associated with type 2 diabetes [9]. However, obesity is a systems-level disorder that cannot be replicated in cells. As such, a functional screen in vivo is needed. Here, we use Drosophila to screen the functional consequences of knocking down expression of candidate human obesity genes and to explore the complex interactions between multiple organ systems that are regulated by environmental and genetic factors.Drosophila has been a useful tool in the functional characterisation of human disease-associated genes [1012]. Many organ systems and metabolic enzymes are highly conserved in Drosophila, as are the major regulatory mechanisms involved in metabolic homeostasis [13,14]. As in humans, Drosophila accumulate lipids and become obese when raised on a high-fat or high-sugar diet, developing cardiomyopathy and diabetic phenotypes [15,16]. Furthermore, more than 60% of the genes identified in an unbiased genome-wide RNAi screen for increased fat levels in Drosophila have human orthologues [17]. Most studies in Drosophila have performed forward genetic screens resulting in obesity [18] before assessing whether misregulation of the corresponding mammalian orthologue affects adiposity [17]. Another report knocked down Drosophila orthologs of human genes near body mass index (BMI) loci from GWAS studies to identify genes regulating adiposity [19].Here, instead, we chose to take advantage of new data from a cohort of patients carrying rare genetic variants that might cause severe early-onset obesity. We set out to identify, in Drosophila, whether any of these genes are likely to be responsible for the obese phenotype. An additional advantage of working with Drosophila is the potential to identify interacting genes and signalling pathways. We proposed that it would then be possible to search for variants in human orthologues of these genes in larger cohorts of patients, to discover further as yet unidentified genes regulating human obesity.To increase our chances of finding pathogenic variants, we focused on rare homozygous variants identified in probands with severe obesity, many from consanguineous families. After knocking down expression of Drosophila orthologues of candidate human obesity genes, we discovered 4 genes that significantly increased triacylglyceride (TAG) levels. Importantly, none of these genes had been associated previously with human obesity, but the pathways in which they act are known and could be further analysed in Drosophila. Knockdown of further members of one of these signalling pathways, the Hippo pathway, also gave an obesity phenotype, highlighting the success of our approach. We then searched for variants in the novel obesity genes we identified in Drosophila, and their associated signalling pathways, in larger cohorts of unrelated obese people and healthy controls. This uncovered yet another gene, which, when knocked down in Drosophila, increased adiposity. We demonstrate that the cross-fertilisation of human and Drosophila genetics is a powerful system to provide novel insights into the genetic and cellular processes regulating adiposity and may ultimately contribute to strategies for the prevention and treatment of obesity.  相似文献   
198.
Lines of mice were obtained by selective breeding for maximum (AIRmax) or minimum (AIRmin) acute inflammation. They present distinct neutrophil influx and show frequency disequilibrium of the solute carrier family 11a member 1 (Slc11a1) alleles. This gene is involved in ion transport at the endosomes within macrophages and neutrophils, interfering in their activation. Homozygous AIRmax and AIRmin sublines for the Slc11a1 gene were produced to examine the interaction of this gene with the acute inflammatory loci. The present work investigated wound-healing traits in AIRmax and AIRmin mice, in F1 and F2 intercrosses, and in Slc11a1 sublines. Two-millimeter ear punches were made in the mice and hole closure was measured during 40 days. AIRmax mice demonstrated significant tissue repair while AIRmin mice did not. Significant differences between the responses of male and female mice were also observed. Wound-healing traits demonstrated a correlation with neutrophil influx in F2 populations. AIRmax SS showed higher ear-wound closure than AIRmax RR mice, suggesting that the Slc11a1 S allele favored ear tissue repair. QTL analysis has detected two inflammatory loci modulating ear wound healing on chromosomes 1 and 14. These results suggest the involvement of the acute inflammation modifier QTL in the wound-healing phenotype.  相似文献   
199.

When modeling infectious diseases, it is common to assume that infection-derived immunity is either (1) non-existent or (2) perfect and lifelong. However there are many diseases in which infection-derived immunity is known to be present but imperfect. There are various ways in which infection-derived immunity can fail, which can ultimately impact the probability that an individual be reinfected by the same pathogen, as well as the long-run population-level prevalence of the pathogen. Here we discuss seven different models of imperfect infection-derived immunity, including waning, leaky and all-or-nothing immunity. For each model we derive the probability that an infected individual becomes reinfected during their lifetime, given that the system is at endemic equilibrium. This can be thought of as the impact that each of these infection-derived immunity failures have on reinfection. This measure is useful because it provides us with a way to compare different modes of failure of infection-derived immunity.

  相似文献   
200.
The metabolic pathways leading to the synthesis of bacterial glycogen involve the action of several enzymes, among which glycogen synthase (GS) catalyzes the elongation of the α-1,4-glucan. GS from Agrobacterium tumefaciens uses preferentially ADPGlc, although UDPGlc can also be used as glycosyl donor with less efficiency. We present here a continuous spectrophotometric assay for the determination of GS activity using ADP- or UDPGlc. When ADPGlc was used as the substrate, the production of ADP is coupled to NADH oxidation via pyruvate kinase (PK) and lactate dehydrogenase (LDH). With UDPGlc as substrate, UDP was converted to ADP via adenylate kinase and subsequent coupling to PK and LDH reactions. Using this assay, we determined the kinetic parameters of GS and compared them with those obtained with the classical radiochemical method. For this purpose, we improved the expression procedure of A. tumefaciens GS using Escherichia coli BL21(DE3)-RIL cells. This assay allows the continuous monitoring of glycosyltransferase activity using ADPGlc or UDPGlc as sugar-nucleotide donors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号