首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15546篇
  免费   1231篇
  国内免费   7篇
  2024年   19篇
  2023年   86篇
  2022年   162篇
  2021年   455篇
  2020年   242篇
  2019年   312篇
  2018年   420篇
  2017年   367篇
  2016年   598篇
  2015年   866篇
  2014年   947篇
  2013年   1117篇
  2012年   1435篇
  2011年   1422篇
  2010年   883篇
  2009年   676篇
  2008年   1040篇
  2007年   924篇
  2006年   895篇
  2005年   853篇
  2004年   742篇
  2003年   623篇
  2002年   616篇
  2001年   107篇
  2000年   75篇
  1999年   107篇
  1998年   130篇
  1997年   92篇
  1996年   71篇
  1995年   54篇
  1994年   50篇
  1993年   57篇
  1992年   47篇
  1991年   29篇
  1990年   40篇
  1989年   42篇
  1988年   18篇
  1987年   23篇
  1986年   15篇
  1985年   18篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   14篇
  1980年   13篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   10篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
231.
Intracellular transport and maintenance of the endomembrane system in eukaryotes depends on formation and fusion of vesicular carriers. A seeming discrepancy exists in the literature about the basic mechanism in the scission of transport vesicles that depend on GTP‐binding proteins. Some reports describe that the scission of COP‐coated vesicles is dependent on GTP hydrolysis, whereas others found that GTP hydrolysis is not required. In order to investigate this pivotal mechanism in vesicle formation, we analyzed formation of COPI‐ and COPII‐coated vesicles utilizing semi‐intact cells. The small GTPases Sar1 and Arf1 together with their corresponding coat proteins, the Sec23/24 and Sec13/31 complexes for COPII and coatomer for COPI vesicles were required and sufficient to drive vesicle formation. Both types of vesicles were efficiently generated when GTP hydrolysis was blocked either by utilizing the poorly hydrolyzable GTP analogs GTPγS and GMP‐PNP, or with constitutively active mutants of the small GTPases. Thus, GTP hydrolysis is not required for the formation and release of COP vesicles.  相似文献   
232.
233.
Mast‐seeding plants often produce high seed crops the year after a warm spring or summer, but the warm‐temperature model has inconsistent predictive ability. Here, we show for 26 long‐term data sets from five plant families that the temperature difference between the two previous summers (ΔT) better predicts seed crops. This discovery explains how masting species tailor their flowering patterns to sites across altitudinal temperature gradients; predicts that masting will be unaffected by increasing mean temperatures under climate change; improves prediction of impacts on seed consumers; demonstrates that strongly masting species are hypersensitive to climate; explains the rarity of consecutive high‐seed years without invoking resource constraints; and generates hypotheses about physiological mechanisms in plants and insect seed predators. For plants, ΔT has many attributes of an ideal cue. This temperature‐difference model clarifies our understanding of mast seeding under environmental change, and could also be applied to other cues, such as rainfall.  相似文献   
234.
Background aimsMesenchymal stromal cells (MSC) derived from bone marrow are immunosuppressive in vitro and in vivo. Recent evidence, however, has shown that in certain settings, MSC can also be immunostimulatory. The mechanisms involved in this process are largely unknown.MethodsMouse spleen T cells were stimulated with allogeneic mixed lymphocyte reaction (MLR) or anti-CD3/CD28 beads and treated with autologous bone marrow MSC or MSC-conditioned medium. CD4+ and CD8+ T-cell proliferation was analyzed after treatment.ResultsWe show that MSC have both suppressive and stimulatory functions toward T cells after stimulation with anti-CD3/CD28 beads or in an MLR. This depended on the ratio of MSC to responder T cells, with low numbers of MSC increasing and higher numbers inhibiting T-cell proliferation. Immunostimulatory function was mediated, in part, by soluble factors. MSC immunosuppression of the MLR was indirect and related to inhibition of antigen-presenting cell maturation. Direct effects of MSC-conditioned medium during anti-CD3/CD28 stimulated proliferation were entirely stimulatory and required the presence of the T-cell receptor. MSC supernatant contained both CCL2 and CCL5 at high levels, but only CCL2 level correlated with the ability to augment proliferation. An anti-CCL2 antibody blocked this proliferative activity.ConclusionsCCL2 plays an important role in the immunostimulatory function of MSC, and we further hypothesize that the immunomodulatory role of MSC is determined by a balance between inhibitory and stimulatory factors, suggesting the need for caution when these cells are investigated in clinical protocols.  相似文献   
235.

Objective

This study aims to investigate in vitro the effect of the VDR agonist BXL-01-0029 onto IFNγ/TNFα-induced CXCL10 secretion by human skeletal muscle cells compared to elocalcitol (VDR agonist), methylprednisolone, methotrexate, cyclosporin A, infliximab and leflunomide; to assess in vivo circulating CXCL10 level in subjects at time of diagnosis with IMs, before therapy, together with TNFα, IFNγ, IL-8, IL-6, MCP-1, MIP-1β and IL-10, vs. healthy subjects.

Methods

Human fetal skeletal muscle cells were used for in vitro studies; ELISA and Bio-Plex were used to measure cell supernatant and IC50 determination or serum cytokines; Western blot and Bio-Plex were for cell signaling analysis.

Results

BXL-01-0029 decreased with the highest potency IFNγ/TNFα-induced CXCL10 protein secretion and targeted cell signaling downstream of TNFα in human skeletal muscle cells; CXCL10 level was the highest in sera of subjects diagnosed with IMs before therapy and the only one significantly different vs. healthy controls.

Conclusions

Our in vitro and in vivo data, while confirm the relevance of CXCL10 in IMs, suggested BXL-01-0029 as a novel pharmacological tool for IM treatment, hypothetically to be used in combination with the current immunosuppressants to minimize side effects.  相似文献   
236.
Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein''s neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.  相似文献   
237.

Background and purpose

TRPV1 is expressed in sensory neurons and vascular smooth muscle cells, contributing to both pain perception and tissue blood distribution. Local desensitization of TRPV1 in sensory neurons by prolonged, high dose stimulation is re-engaged in clinical practice to achieve analgesia, but the effects of such treatments on the vascular TRPV1 are not known.

Experimental approach

Newborn rats were injected with capsaicin for five days. Sensory activation was measured by eye wiping tests and plasma extravasation. Isolated, pressurized skeletal muscle arterioles were used to characterize TRPV1 mediated vascular responses, while expression of TRPV1 was detected by immunohistochemistry.

Key results

Capsaicin evoked sensory responses, such as eye wiping (3.6±2.5 versus 15.5±1.4 wipes, p<0.01) or plasma extravasation (evans blue accumulation 10±3 versus 33±7 µg/g, p<0.05) were reduced in desensitized rats. In accordance, the number of TRPV1 positive sensory neurons in the dorsal root ganglia was also decreased. However, TRPV1 expression in smooth muscle cells was not affected by the treatment. There were no differences in the diameter (192±27 versus 194±8 µm), endothelium mediated dilations (evoked by acetylcholine), norepinephrine mediated constrictions, myogenic response and in the capsaicin evoked constrictions of arterioles isolated from skeletal muscle.

Conclusion and implications

Systemic capsaicin treatment of juvenile rats evokes anatomical and functional disappearance of the TRPV1-expressing neuronal cells but does not affect the TRPV1-expressing cells of the arterioles, implicating different effects of TRPV1 stimulation on the viability of these cell types.  相似文献   
238.
Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to “increase,” “decrease,” and “maintain” their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the “increase” instruction, and women displayed greater LPP amplitudes than men to the “increase” instruction. There were no differences to the “decrease” instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.  相似文献   
239.
MicroRNAs (miRNAs) play important roles in diverse biological processes and are emerging as key regulators of tumorigenesis and tumor progression. To explore the dysregulation of miRNAs in breast cancer, a genome-wide expression profiling of 939 miRNAs was performed in 50 breast cancer patients. A total of 35 miRNAs were aberrantly expressed between breast cancer tissue and adjacent normal breast tissue and several novel miRNAs were identified as potential oncogenes or tumor suppressor miRNAs in breast tumorigenesis. miR-125b exhibited the largest decrease in expression. Enforced miR-125b expression in mammary cells decreased cell proliferation by inducing G2/M cell cycle arrest and reduced anchorage-independent cell growth of cells of mammary origin. miR-125b was found to perform its tumor suppressor function via the direct targeting of the 3’-UTRs of ENPEP, CK2-α, CCNJ, and MEGF9 mRNAs. Silencing these miR-125b targets mimicked the biological effects of miR-125b overexpression, confirming that they are modulated by miR-125b. Analysis of ENPEP, CK2-α, CCNJ, and MEGF9 protein expression in breast cancer patients revealed that they were overexpressed in 56%, 40–56%, 20%, and 32% of the tumors, respectively. The expression of ENPEP and CK2-α was inversely correlated with miR-125b expression in breast tumors, indicating the relevance of these potential oncogenic proteins in breast cancer patients. Our results support a prognostic role for CK2-α, whose expression may help clinicians predict breast tumor aggressiveness. In particular, our results show that restoration of miR-125b expression or knockdown of ENPEP, CK2-α, CCNJ, or MEGF9 may provide novel approaches for the treatment of breast cancer.  相似文献   
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号