首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15707篇
  免费   1234篇
  国内免费   7篇
  16948篇
  2024年   24篇
  2023年   96篇
  2022年   247篇
  2021年   457篇
  2020年   242篇
  2019年   313篇
  2018年   420篇
  2017年   368篇
  2016年   600篇
  2015年   867篇
  2014年   948篇
  2013年   1118篇
  2012年   1436篇
  2011年   1424篇
  2010年   886篇
  2009年   677篇
  2008年   1041篇
  2007年   928篇
  2006年   895篇
  2005年   856篇
  2004年   750篇
  2003年   631篇
  2002年   617篇
  2001年   112篇
  2000年   79篇
  1999年   111篇
  1998年   130篇
  1997年   94篇
  1996年   71篇
  1995年   59篇
  1994年   50篇
  1993年   59篇
  1992年   48篇
  1991年   29篇
  1990年   40篇
  1989年   42篇
  1988年   16篇
  1987年   24篇
  1986年   15篇
  1985年   18篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   14篇
  1980年   13篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1975年   10篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
In Escherichia coli, the molecular chaperones DnaK and DnaJ cooperate to assist the folding of newly synthesized or unfolded polypeptides. DnaK and DnaJ bind to hydrophobic motifs in these proteins and they also bind to each other. Together, this system is thought to be sufficiently versatile to act on the entire proteome, which creates interesting challenges in understanding the interactions between DnaK, DnaJ and their thousands of potential substrates. To address this question, we computationally predicted the number and frequency of DnaK- and DnaJ-binding motifs in the E. coli proteome, guided by free energy-based binding consensus motifs. This analysis revealed that nearly every protein is predicted to contain multiple DnaK- and DnaJ-binding sites, with the DnaJ sites occurring approximately twice as often. Further, we found that an overwhelming majority of the DnaK sites partially or completely overlapped with the DnaJ-binding motifs. It is well known that high concentrations of DnaJ inhibit DnaK-DnaJ-mediated refolding. The observed overlapping binding sites suggest that this phenomenon may be explained by an important balance in the relative stoichiometry of DnaK and DnaJ. To test this idea, we measured the chaperone-assisted folding of two denatured substrates and found that the distribution of predicted DnaK- and DnaJ-binding sites was indeed a good predictor of the optimal stoichiometry required for folding. These studies provide insight into how DnaK and DnaJ might cooperate to maintain global protein homeostasis.  相似文献   
82.
83.
84.
85.
Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci--coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA)--were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans.  相似文献   
86.
Ecosystems are subject to multiple, natural and anthropogenic environmental influences, including nitrogen (N) deposition, land use and climate. Assessment of the relative importance of these influences on biodiversity and ecosystem functioning is crucial for guiding policy and management decisions to mitigate global change; yet, few studies consider multiple drivers. In the UK, ongoing loss of the internationally important arctic/alpine moss‐sedge community, Racomitrium heath, has been linked to elevated N deposition, high grazing pressures and their combination; however, the relative importance of these drivers remains unclear. We used environmental gradients across the habitat's European distribution (UK, Faroes, Norway and Iceland) to investigate the relative impact of N deposition and grazing pressure, as well as climate, on the condition of the dominant moss species, Racomitrium lanuginosum. Key variables including tissue chemistry, growth and cover were measured at 36 sites, and multiple linear regressions were used to examine the relative importance of the drivers across sites. Our results clearly show that regional variation in the condition of R. lanuginosum across Europe is primarily associated with the impacts of N deposition, with climate (air temperature) and grazing pressure playing secondary roles. In contrast to previous experimental studies, we found moss growth to be stimulated by elevated N deposition; this apparent discrepancy may result from the use of artificially high N concentrations in many experiments. Despite increased growth rates, we found that moss mat depth and cover declined in response to N deposition. Our results suggest that this is due to increased decomposition of material in the moss mat, which ultimately leads to loss of moss cover and habitat degradation. This study clearly demonstrates both the key role of N deposition in degradation of Racomitrium heath and the importance of observational studies along natural gradients for testing predictions from experimental studies in the real world.  相似文献   
87.
The genomes of several vertebrates contain two genes encoding proteins highly similar to threonine synthase (TS), even though the biosynthesis of l-threonine (l-Thr) is not known to occur in these animals. We report a bioinformatic analysis of the two TS-like genes, the recombinant expression of one murine TS homolog (mTSH2) and its initial biochemical characterization. Recombinant mTSH2 contained bound pyridoxal-5'-phosphate (PLP), but did not synthesize l-Thr. The enzyme did, however, bind O-phospho-homoserine (PHS; the actual TS substrate) and degraded it to alpha-ketobutyrate, phosphate, and ammonia-a known side reaction of microbial TSs. mTSH2 also degraded O-phospho-threonine (PThr) to alpha-ketobutyrate, showing that it can act as a catabolic phospho-lyase on both gamma- and beta-phosphorylated substrates. These findings suggest an unusual evolutionary origin for mTSH2, whereby an original TS enzyme became 'recycled' into a phospho-lyase upon dismissal, in metazoa, of the l-Thr biosynthetic pathway.  相似文献   
88.
A method for rapid and highly effective plant micropropagation from vegetative meristems was established for Aloe barbadensis Mill. Plant micropropagation was achieved culturing apices on medium containing 1.1 M 2,4-dichlorophenoxyacetic acid and 2.3 M kinetin for 15–30 days. High morphogenetic ability was maintained by transferring explants (after 60 days) on media containing 0.11 M 2,4-dichlorophenoxyacetic acid and 2.2 M 6-benzylaminopurine.  相似文献   
89.
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol‐enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号