首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16918篇
  免费   1292篇
  国内免费   7篇
  2024年   19篇
  2023年   97篇
  2022年   237篇
  2021年   503篇
  2020年   268篇
  2019年   351篇
  2018年   468篇
  2017年   387篇
  2016年   650篇
  2015年   953篇
  2014年   1029篇
  2013年   1216篇
  2012年   1529篇
  2011年   1523篇
  2010年   931篇
  2009年   724篇
  2008年   1111篇
  2007年   1001篇
  2006年   959篇
  2005年   885篇
  2004年   773篇
  2003年   660篇
  2002年   642篇
  2001年   127篇
  2000年   100篇
  1999年   128篇
  1998年   137篇
  1997年   99篇
  1996年   77篇
  1995年   57篇
  1994年   53篇
  1993年   58篇
  1992年   58篇
  1991年   37篇
  1990年   53篇
  1989年   46篇
  1988年   31篇
  1987年   28篇
  1986年   23篇
  1985年   21篇
  1984年   25篇
  1983年   12篇
  1982年   19篇
  1981年   15篇
  1980年   19篇
  1979年   11篇
  1978年   11篇
  1977年   9篇
  1975年   11篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
131.
Potentiometric titration followed by e.p.r. measurements were used to determine the midpoint reduction potentials of the redox centres of a molybdenum-containing iron-sulphur protein previously isolated from Desulfovibrio gigas, a sulphate-reducing bacterium (Moura, Xavier, Bruschi, Le Gall, Hall & Cammack (1976) Biochem. Biophys. Res. Commun. 728 782-789; Moura, Xavier, Bruschi, Le Gall & Cabral (1977) J. Less Common Metals 54, 555-562). The iron-sulphur centres could readily be distinguished into three types by means of g values, temperature effect, oxidation-reduction potential values and reduction rates. The type-I Fe-S centres are observed at 77 K. They show mid-point potential values of -260mV (Fe-S type IA) and -440 mV (Fe-S type IB). Centres of types IA and IB appear to have similar spectra at 77 K and 24 K. The Fe-S type-II centres are only observed below 65 K and have a midpoint potential of -28mV. Long equilibration times (30 min) with dye mediators under reducing conditions were necessary to observe the very slow equilibrating molybdenum signals. The potential values associated with this signal were estimated to be approx. -415 mV for Mo(VI)/Mo(V) and-530mV for Mo(V)/Mo(IV).  相似文献   
132.
A NMR and magnetic susceptibility study of the oxidized and reduced states of three different oligomers (forms) of a [4Fe-4S] ferredoxin protein from Desulphovibrio gigas, FdI, FdI′, and FdII was carried out. FdI and FdI′ are different trimers and FdII a tetramer of the same basic subunit. A probable assignment of the contact shifted resonances is indicated. Since the temperature dependences of the contact shifted resonances associated with each [4Fe-4S] are not all similar a delocalized model for the spin densities on the 4Fe does not apply. The exchange rate between oxidized and reduced states is slow on the NMR time scale. The three oligomers are not magnetically equivalent. Using the “three state hypothesis” terminology it is shown that FdIox is predominantly in the C2? state and changes upon reduction into the C3? state, while FdIIox is in the C? state and changes into the C2? state. FdI′ does not easily fit into this classification. This study shows a similarity of magnetic behaviour between FdI and bacterial ferredoxins (e.g. Bacillus polymyxa) and between FdII and HiPIP from Chromatium sp.. The influence of the quaternary structure on the stabilization of the different oxidation states of ferredoxins as well as on their redox potentials is discussed.  相似文献   
133.
The 300-MHz proton NMR spectra of the tetrahaem cytochrome c3 from Desulfovibrio vulgaris were examined while varying the pH and the redox potential. The analysis of the complete NMR reoxidation pattern was done taking into account all the 16 redox states that can be present in the redox titration of a tetra-redox-center molecule. A network of saturation transfer experiments performed at different oxidation stages, between the fully reduced and the fully oxidized states, allowed the observation of different resonances for some of the haem methyl groups. In the present experimental conditions, some of the haems show a fast intramolecular electron exchange rate, but the intermolecular electron exchange is always slow. In intermediate reoxidation stages, large shifts of the resonances of some haem methyl groups were observed upon changing the pH. These shifts are discussed in terms of a pH dependence of the haem midpoint redox potentials. The physiological relevance of this pH dependence is discussed.  相似文献   
134.
Ohne Zusammenfassung
Long-term telemetry of body temperature with synchronous measurement of metabolic rate in torpid and non-torpid Blue-naped Mousebirds (Urocolius macrourus)
  相似文献   
135.
The Desulfovibrio gigas aldehyde-oxido-reductase contains molybdenum and iron-sulfur clusters. M?ssbauer spectroscopy was used to characterize the iron-sulfur clusters. Spectra of the enzyme in its oxidized, partially reduced and benzaldehyde-reacted states were recorded at different temperatures and applied magnetic fields. All the iron atoms in D. gigas aldehyde oxido-reductase are organized as [2Fe-2S] clusters. In the oxidized enzyme, the clusters are diamagnetic and exhibit a single quadrupole doublet with parameters (delta EQ = 0.62 +/- 0.02 mm/s and delta = 0.27 +/- 0.01 mm/s) typical for the [2Fe-2S]2+ state. M?ssbauer spectra of the reduced clusters also show the characteristics of a [2Fe-2S]1+ cluster and can be explained by a spin-coupling model proposed for the [2Fe-2S] cluster where a high-spin ferrous ion (S = 2) is antiferromagnetically coupled to a high-spin ferric ion (S = 5/2) to form a S = 1/2 system. Two ferrous sites with different delta EQ values (3.42 mm/s and 2.93 mm/s at 85 K) are observed for the reduced enzyme, indicating the presence of two types of [2Fe-2S] clusters in the D. gigas enzyme. Taking this observation together with the re-evaluated value of iron content (3.5 +/- 0.1 Fe/molecule), it is concluded that, similar to other Mo-hydroxylases, the D. gigas aldehyde oxido-reductase also contains two spectroscopically distinguishable [2Fe-2S] clusters.  相似文献   
136.
Pseudomonas paucimobilis Q1 originally isolated as biphenyl degrading organism (Furukawa et al. 1983), was shown to grow with naphthalene. After growth with biphenyl or naphthalene the strain synthesized the same enzyme for the ring cleavage of 2,3-dihydroxybiphenyl or 1,2-dihydroxynaphthalene. The enzyme, although characterized as 2,3-dihydroxybiphenyl dioxygenase (Taira et al. 1988), exhibited considerably higher relative activity with 1,2-dihydroxynaphthalene. These results demonstrate that this enzyme can function both in the naphthalene and biphenyl degradative pathway.Abbreviations DHBP dihydroxybiphenyl - DHBPDO 2,3-dihydroxybiphenyl dioxygenase - DHDHNDH 1,2-dihydroxy-1,2-dihydronaphthalene dehydrogenase - DHN 1,2-dihydroxynaphthalene - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBP cis-2-hydroxybenzalpyruvate - HOPDA 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate - PCB polychlorinated biphenyl - 2NS naphthalene-2-sulfonic acid  相似文献   
137.
In order to utilize sulfate as the terminal electron acceptor, sulfate-reducing bacteria are equipped with a complex enzymatic system in which adenylylsulfate (AdoPSO4) reductase plays one of the major roles, reducing AdoPSO4 (the activated form of sulfate) to sulfite, with release of AMP. The enzyme has been purified to homogeneity from the anaerobic sulfate reducer Desulfovibrio gigas. The protein is composed of two non-identical subunits (70 kDa and 23 kDa) and is isolated in a multimeric form (approximately 400 kDa). It is an iron-sulfur, flavin-containing protein, with one FAD moiety, eight iron atoms and a minimum molecular mass of 93 kDa. Low-temperature EPR studies were performed to characterize its redox centers. In the native state, the enzyme showed an almost isotropic signal centered at g = 2.02 and only detectable below 20 K. This signal represented a minor species (0.10-0.25 spins/mol) and showed line broadening in the enzyme isolated from 57Fe-grown cells. Addition of sulfite had a minor effect on the EPR spectrum, but caused a major decrease in the visible region of the optical spectrum (around 392 nm). Further addition of AMP induced only a minor change in the visible spectrum whereas major changes were seen in the EPR spectrum; the appearance of a rhombic signal at g values 2.096, 1.940 and 1.890 (reduced Fe-S center I) observable below 30 K and a concomitant decrease in intensity of the g = 2.02 signal were detected. Effects of chemical reductants (ascorbate, H2/hydrogenase-reduced methyl viologen and dithionite) were also studied. A short time reduction with dithionite (15 s) or reduction with methyl viologen gave rise to the full reduction of center I (with slightly modified g values at 2.079, 1.939 and 1.897), and the complete disappearance of the g = 2.02 signal. Further reduction with dithionite produces a very complex EPR spectrum of a spin-spin-coupled nature (observable below 20 K), indicating the presence of at least two iron-sulfur centers, (centers I and II). M?ssbauer studies on 57Fe-enriched D. gigas AdoPSO4 reductase demonstrated unambiguously the presence of two 4Fe clusters. Center II has a redox potential less than or equal to 400 mV and exhibits spectroscopic properties that are characteristic of a ferredoxin-type [4Fe-4S] cluster. Center I exhibits spectra with atypical M?ssbauer parameters in its reduced state and has a midpoint potential around 0 mV, which is distinct from that of a ferredoxin-type [4Fe-4S] cluster, suggesting a different structure and/or a distinct cluster-ligand environment.  相似文献   
138.
A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.  相似文献   
139.
M?ssbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. M?ssbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the M?ssbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.  相似文献   
140.
Summary Peripheral blood lymphocytes (PBL) of melanoma patients were sensitized in vitro with lymphocytes of a single donor or with a pool of lymphocytes of 5–20 different donors. After 6–7 days, the cytotoxic activity of the sensitized PBL was tested against cultured autologous tumor cells and lymphocytes in a 51Cr-release assay. Tumor lysis was observed in 13 of 16 cases in which patients' PBL (Pt-PBL) were stimulated by a pool of allogeneic lymphocytes and in five out of seven cases when single sensitization was performed. In no case was lysis of autologous normal lymphocytes or blasts seen. Cultivation of Pt-PBL with irradiated autologous tumor cells never led to the induction of lymphocytes cytotoxic to melanoma cells. Lysability by pool-activated autologous Pt-PBL of fresh cryopreserved tumor cells was compared to that of short-term cultured tumor cells, and no significant differences were observed. Cold-target inhibition experiments indicated that the cytotoxicity of Pt-PBL was tumor-restricted since only autologous melanoma cells but not lymphocytes were able to inhibit the reaction. These results indicate that activation of Pt-PBL is necessary in order to elicit or amplify their antitumor activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号