首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16029篇
  免费   1294篇
  国内免费   7篇
  2024年   19篇
  2023年   87篇
  2022年   211篇
  2021年   457篇
  2020年   242篇
  2019年   317篇
  2018年   430篇
  2017年   370篇
  2016年   601篇
  2015年   869篇
  2014年   958篇
  2013年   1125篇
  2012年   1454篇
  2011年   1434篇
  2010年   890篇
  2009年   681篇
  2008年   1051篇
  2007年   932篇
  2006年   905篇
  2005年   871篇
  2004年   753篇
  2003年   640篇
  2002年   632篇
  2001年   128篇
  2000年   86篇
  1999年   119篇
  1998年   140篇
  1997年   102篇
  1996年   76篇
  1995年   59篇
  1994年   54篇
  1993年   64篇
  1992年   63篇
  1991年   43篇
  1990年   58篇
  1989年   55篇
  1988年   25篇
  1987年   31篇
  1986年   26篇
  1985年   29篇
  1984年   23篇
  1983年   16篇
  1982年   15篇
  1981年   21篇
  1980年   17篇
  1979年   17篇
  1977年   15篇
  1975年   26篇
  1974年   13篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
51.
52.
Transport of ions across the blood-brain barrier   总被引:2,自引:0,他引:2  
Capillaries in the brain are formed by a uniquely specialized endothelial cell that regulates the movement of substances between blood and brain. Although they provide an impermeable barrier to some solutes, brain capillary endothelial cells facilitate the transcapillary exchange of others. In addition, they contain specific enzymes that contribute to a metabolic blood-brain barrier by limiting the movement of compounds such as neurotransmitters across the capillary wall. Studies of sodium and potassium transport by brain capillaries indicate that the endothelial cell contains distinct types of ion transport systems on the two sides of the capillary wall, i.e., the luminal and antiluminal membranes of the endothelial cell. As a result, specific solutes can be pumped across the capillary against an electrochemical gradient. These transport systems are likely to play a role in the active secretion of fluid from blood to brain and in maintaining a constant concentration of ions in the brain's interstitial fluid. In this way, the brain capillary endothelium is structurally and functionally related to an epithelium.  相似文献   
53.
54.
We have studied putative nicotinic acetylcholine receptors in the optic lobe of the newborn chick, using 125I-labeled alpha-bungarotoxin, a specific blocker of acetylcholine receptors in the neuromuscular junction, and [3H]acetylcholine, a ligand which in the presence of atropine selectively labels binding sites of nicotinic character in rat brain cortex (Schwartz et al., 1982). [3H]Acetylcholine binds reversibly to a single class of high affinity binding sites (KD = 2.2 X 10(-8) M) which occur at a tissue concentration of 5.7 pmol/g. A large fraction (approximately 60%) of these binding sites is solubilized by Triton X-100, sodium cholate, or the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Solubilization increases the affinity for acetylcholine and several nicotinic drugs from 1.5- to 7-fold. The acetylcholine-binding macromolecule resembles the receptor for alpha-bungarotoxin present in the same tissue with respect to subcellular distribution, hydrodynamic properties, lectin binding, and agonist affinity rank order. It differs from the toxin receptor in affinity for nicotinic antagonists, sensitivity to thermal inactivation, and regional distribution. The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor.  相似文献   
55.
The incorporation of [14C]mevalonate and [14C]isopentenyl diphosphate into geranylgeranyl diphosphate was investigated in in vitro systems from Cucurbita pepo (pumpkin) endosperm and from Avena sativa etioplasts. Mevalonate incorporation was effectively inhibited in the pumpkin system by geranylgeranyl diphosphate and geranylgeranyl monophosphate but less effectively by phytyl diphosphate or inorganic diphosphate. Membrane lipids, geranyllinalool, or lecithin enhanced mevalonate incorporation in the Cucurbita system. Incorporation of isopentenyl diphosphate was also enhanced by lecithin and inhibited by geranylgeranyl diphosphate in the Cucurbita system. No lipid enhancement was found in the Avena system; inhibition by GGPP required a much higher GGPP concentration than in the Cucurbita system.  相似文献   
56.
Detailed surveys throughout San Francisco Bay over an annual cycle (1980) show that seasonal variations of phytoplankton biomass, community composition, and productivity can differ markedly among estuarine habitat types. For example, in the river-dominated northern reach (Suisun Bay) phytoplankton seasonality is characterized by a prolonged summer bloom of netplanktonic diatoms that results from the accumulation of suspended particulates at the convergence of nontidal currents (i.e. where residence time is long). Here turbidity is persistently high such that phytoplankton growth and productivity are severely limited by light availability, the phytoplankton population turns over slowly, and biological processes appear to be less important mechanisms of temporal change than physical processes associated with freshwater inflow and turbulent mixing. The South Bay, in contrast, is a lagoon-type estuary less directly coupled to the influence of river discharge. Residence time is long (months) in this estuary, turbidity is lower and estimated rates of population growth are high (up to 1–2 doublings d–1), but the rapid production of phytoplankton biomass is presumably balanced by grazing losses to benthic herbivores. Exceptions occur for brief intervals (days to weeks) during spring when the water column stratifies so that algae retained in the surface layer are uncoupled from benthic grazing, and phytoplankton blooms develop. The degree of stratification varies over the neap-spring tidal cycle, so the South Bay represents an estuary where (1) biological processes (growth, grazing) and a physical process (vertical mixing) interact to cause temporal variability of phytoplankton biomass, and (2) temporal variability is highly dynamic because of the short-term variability of tides. Other mechanisms of temporal variability in estuarine phytoplankton include: zooplankton grazing, exchanges of microalgae between the sediment and water column, and horizontal dispersion which transports phytoplankton from regions of high productivity (shallows) to regions of low productivity (deep channels).Multi-year records of phytoplankton biomass show that large deviations from the typical annual cycles observed in 1980 can occur, and that interannual variability is driven by variability of annual precipitation and river discharge. Here, too, the nature of this variability differs among estuary types. Blooms occur only in the northern reach when river discharge falls within a narrow range, and the summer biomass increase was absent during years of extreme drought (1977) or years of exceptionally high discharge (1982). In South Bay, however, there is a direct relationship between phytoplankton biomass and river discharge. As discharge increases so does the buoyancy input required for density stratification, and wet years are characterized by persistent and intense spring blooms.  相似文献   
57.
Proton NMR studies of N,N-diethylformamide (def) exchange on [M(Me6tren)def]2+ where M = Co and Cu yield: kex (298.2K) = 26.3 ± 2.2, 980 ± 70 s−1; ΔH = 58.3 ± 1.7, 36.3 ± 0.9 kJ mol−1; ΔS= −22.2 ± 4.6, −65.9 ± 2.5 J K−1 mol−1; and ΔV = −1.3 ± 0.2, 5.3 ± 0.3 cm3 mol−1 respectively. These data which are consistent with a and d activation modes operating when M = Co and Cu respectively are compared with data for related systems.  相似文献   
58.
Using single-cell suspensions of mechanically dissociated, prenatal BDIX-rat brain cells (13th, 15th, and 21st days after fertilization) for immunization, we have established a collection of 37 monoclonal antibodies (Mabs) directed against neural cell surface determinants. The developmental-stage-dependent expression of cell-surface antigens recognized by these Mabs was analyzed both on plasma membranes isolated from whole brains of BDIX rats (prenatal days 13-22 and adults) using an indirect 125I solid-phase radioimmunoassay, and on intact BDIX-rat brain cells (prenatal days 13-22) using a fluorescence-activated cell sorter. Different types of developmental stage-dependent profiles of Mab binding were found, these being indicative of the presence of neural cell surface determinants whose expression increases, decreases, or does not change with brain development. Some of the Mab-binding profiles showed transient changes as a function of developmental stage. These Mabs are currently being used for the characterization, reproducible identification, and isolation of neural cell subpopulations of the developing rat brain, with the aim of investigating the cell type dependence and developmental (differentiation) stage dependence of malignant transformation following pulse exposure to the carcinogen N-ethyl-N-nitrosourea at defined stages of brain development.  相似文献   
59.
Summary The frequency-place map of the horseshoe bat cochlea was studied with the horseradish peroxidase (HRP) technique involving focal injections into various, physiologically defined regions of cochlear nucleus (CN). The locations of labeled spiral ganglion cells and their termination sites on inner hair cells of the organ of Corti from injections into CN-regions responsive to different frequencies were analyzed in three dimensional reconstructions of the cochlea. Horseshoe bats from different geographical populations were investigated. They emit orientation calls with constant frequency (CF) components around 77 kHz (Rhinolophus rouxi from Ceylon) and 84 kHz (Rhinolophus rouxi from India) and their auditory systems are sharply tuned to the respective CF-components.The HRP-map shows that in both populations: (i) the frequency range around the CF-component of the echolocation signal is processed in the second half-turn of the cochlea, where basilar membrane (BM) is not thickened, secondary spiral lamina (LSS) is still present and innervation density is maximal; (ii) frequencies more than 5 kHz above the CF-component are processed in the first halfturn, where the thickened BM is accompanied by LSS and innervation density is low; (iii) frequencies below the spectral content of the orientation call are represented in apical turns showing no morphological specializations. The data demonstrate that the cochlea of horseshoe bats is normalized to the frequency of the individual specific CF-component of the echolocation call.The HRP-map can account for the overrepresentation of neurons sharply tuned to the CF-signal found in the central auditory system. A comparison of the HRP-map with a map derived with the swollen nuclei technique following loud sound exposure (Bruns 1976b) reveals that the latter is shifted towards cochlear base by about 4 mm. This discrepancy warrants a new interpretation of the functional role of specialized morphological structures of the cochlea within the mechanisms giving rise to the exceptionally high frequency selectivity of the auditory system.Abbreviations AVCN anteroventral CN - BF best frequency - BM basilar membrane - CF constant frequency - CN cochlear nucleus - DCN dorsal CN - FM frequency modulated - HRP horseradish peroxidase - IHC inner hair cell - LSS secondary spiral lamina - OHC outer hair cell - PVCN posteroventral CN - RF resting frequency - RRc Rhinolophus rouxi from Ceylon - RRi Rhinolophus rouxi from India  相似文献   
60.
Summary In brush border membrane vesicles from the midgut ofPhilosamia cynthia larvae (Lepidoptera) thel- andd-alanine uptake is dependent on a potassium gradient and on transmembrane electrical potential difference. Each isomer inhibits the uptake of the other form: inhibition ofl-alanine uptake byd-alanine is competitive, whereas inhibition ofd-alanine uptake byl-alanine is noncompetitive. Transstimulation experiments as well as the different pattern of specificity to cations suggest the existence of two transport systems. Kinetic parameters for the two transporters have been calculated both when Kout>Kin and Kout=Kin.d-alanine is actively transported also by the whole midgut, but it is not metabolized by the intestinal tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号