首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15792篇
  免费   1258篇
  国内免费   7篇
  17057篇
  2024年   24篇
  2023年   96篇
  2022年   247篇
  2021年   458篇
  2020年   242篇
  2019年   312篇
  2018年   420篇
  2017年   367篇
  2016年   599篇
  2015年   868篇
  2014年   952篇
  2013年   1119篇
  2012年   1438篇
  2011年   1427篇
  2010年   886篇
  2009年   683篇
  2008年   1052篇
  2007年   927篇
  2006年   898篇
  2005年   862篇
  2004年   744篇
  2003年   629篇
  2002年   621篇
  2001年   113篇
  2000年   84篇
  1999年   116篇
  1998年   132篇
  1997年   96篇
  1996年   74篇
  1995年   57篇
  1994年   53篇
  1993年   59篇
  1992年   51篇
  1991年   33篇
  1990年   44篇
  1989年   47篇
  1988年   17篇
  1987年   29篇
  1986年   16篇
  1985年   20篇
  1984年   17篇
  1983年   13篇
  1982年   11篇
  1981年   16篇
  1980年   13篇
  1979年   9篇
  1978年   7篇
  1977年   14篇
  1976年   9篇
  1975年   12篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
Plant–soil interactions directly affect plant success in terms of establishment, survival, growth and reproduction. Negative plant–soil feedback on such traits may therefore reduce the density and abundance of plants of a given species at a given site. Furthermore, if conspecific feedback varies among population sites, it could help explain geographic variation in plant population size. We tested for among-site variation in conspecific plant–soil feedback in a greenhouse experiment using seeds and soils from 8 natural populations of Lobelia siphilitica hosting 30–330 plants. The first cohort of seeds was grown on soil collected from each native site, while the second cohort was grown on the soil conditioned by the first. Our goal was to distinguish site-specific effects mediated by biotic and/or abiotic soil properties from those inherent in seed sources. Cohort 1 plants grown from seeds produced in small populations performed better in terms of germination, growth, and survival compared to plants produced in large populations. Plant performance decreased substantially between cohorts, indicating strong negative feedback. Most importantly, the strength of negative feedback scaled linearly (i.e., was less negative) with increasing size of the native plant population, particularly for germination and survival, and was better explained by soil- rather than seed-source effects. Even with a small number of sites, our results suggest that the potential for negative plant–soil feedback varies among populations of L. siphilitica, and that small populations were more susceptible to negative feedback. Conspecific plant–soil feedback may contribute to plant population size variation within a species’ native range.  相似文献   
52.
53.
In Escherichia coli, the molecular chaperones DnaK and DnaJ cooperate to assist the folding of newly synthesized or unfolded polypeptides. DnaK and DnaJ bind to hydrophobic motifs in these proteins and they also bind to each other. Together, this system is thought to be sufficiently versatile to act on the entire proteome, which creates interesting challenges in understanding the interactions between DnaK, DnaJ and their thousands of potential substrates. To address this question, we computationally predicted the number and frequency of DnaK- and DnaJ-binding motifs in the E. coli proteome, guided by free energy-based binding consensus motifs. This analysis revealed that nearly every protein is predicted to contain multiple DnaK- and DnaJ-binding sites, with the DnaJ sites occurring approximately twice as often. Further, we found that an overwhelming majority of the DnaK sites partially or completely overlapped with the DnaJ-binding motifs. It is well known that high concentrations of DnaJ inhibit DnaK-DnaJ-mediated refolding. The observed overlapping binding sites suggest that this phenomenon may be explained by an important balance in the relative stoichiometry of DnaK and DnaJ. To test this idea, we measured the chaperone-assisted folding of two denatured substrates and found that the distribution of predicted DnaK- and DnaJ-binding sites was indeed a good predictor of the optimal stoichiometry required for folding. These studies provide insight into how DnaK and DnaJ might cooperate to maintain global protein homeostasis.  相似文献   
54.
55.
Ecosystems are subject to multiple, natural and anthropogenic environmental influences, including nitrogen (N) deposition, land use and climate. Assessment of the relative importance of these influences on biodiversity and ecosystem functioning is crucial for guiding policy and management decisions to mitigate global change; yet, few studies consider multiple drivers. In the UK, ongoing loss of the internationally important arctic/alpine moss‐sedge community, Racomitrium heath, has been linked to elevated N deposition, high grazing pressures and their combination; however, the relative importance of these drivers remains unclear. We used environmental gradients across the habitat's European distribution (UK, Faroes, Norway and Iceland) to investigate the relative impact of N deposition and grazing pressure, as well as climate, on the condition of the dominant moss species, Racomitrium lanuginosum. Key variables including tissue chemistry, growth and cover were measured at 36 sites, and multiple linear regressions were used to examine the relative importance of the drivers across sites. Our results clearly show that regional variation in the condition of R. lanuginosum across Europe is primarily associated with the impacts of N deposition, with climate (air temperature) and grazing pressure playing secondary roles. In contrast to previous experimental studies, we found moss growth to be stimulated by elevated N deposition; this apparent discrepancy may result from the use of artificially high N concentrations in many experiments. Despite increased growth rates, we found that moss mat depth and cover declined in response to N deposition. Our results suggest that this is due to increased decomposition of material in the moss mat, which ultimately leads to loss of moss cover and habitat degradation. This study clearly demonstrates both the key role of N deposition in degradation of Racomitrium heath and the importance of observational studies along natural gradients for testing predictions from experimental studies in the real world.  相似文献   
56.
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol‐enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.  相似文献   
57.
58.

Background

Animal studies have demonstrated complex cortical reorganization following peripheral nerve lesion. Central projection fields of intact nerves supplying skin areas which border denervated skin, extended into the deafferentiated cortical representation area. As a consequence of nerve lesions and subsequent reorganization an increase of the somatosensory evoked potentials (SEPs) was observed in cats when intact neighbouring nerves were stimulated. An increase of SEP-components of patients with nerve lesions may indicate a similar process of posttraumatic plastic cortical reorganization.

Methods

To test if a similar process of post-traumatic plastic cortical reorganization does occur in humans, the SEP of intact neighbouring hand nerves were recorded in 29 patients with hand nerve lesions. To hypothetically explain the observed changes of SEP-components, SEP recording following paired stimulation of the median nerve was performed in 12 healthy subjects.

Results

Surprisingly 16 of the 29 patients (55.2%) showed a reduction or elimination of N35, P45 and N60. Patients with lesions of two nerves showed more SEP-changes than patients with a single nerve lesion (85.7%; 6/7 nerves; vs. 34.2%; 13/38 nerves; Fisher's exact test, p < 0.05). With paired stimulation a suppression of the amplitude of N20, P25 and P45 (p < 0.05; sign test), and a marked increment of N35 (p < 0.05; sign test) and N60 (not significant; sign test) of the second response could be observed.

Conclusion

The results of the present investigation do not provide evidence of collateral innervation of peripherally denervated cortical neurons by neurons of adjacent cortical representation areas. They rather suggest that secondary components of the excitatory response to nerve stimulation are lost in cortical areas, which surround the denervated region.  相似文献   
59.
Osteopontin (SPP1) is an important bone matrix mediator found to have key roles in inflammation and immunity. SPP1 genetic polymorphisms and increased osteopontin protein levels have been reported to be associated with SLE in small patient collections. The present study evaluates association between SPP1 polymorphisms and SLE in a large cohort of 1141 unrelated SLE patients [707 European-American (EA) and 434 African-American (AA)], and 2009 unrelated controls (1309 EA and 700 AA). Population-based case-control association analyses were performed. To control for potential population stratification, admixture adjusted logistic regression, genomic control (GC), structured association (STRAT), and principal components analysis (PCA) were applied. Combined analysis of 2 ethnic groups, showed the minor allele of 2 SNPs (rs1126616T and rs9138C) significantly associated with higher risk of SLE in males (P = 0.0005, OR = 1.73, 95% CI = 1.28-2.33), but not in females. Indeed, significant gene-gender interactions in the 2 SNPs, rs1126772 and rs9138, were detected (P = 0.001 and P = 0.0006, respectively). Further, haplotype analysis identified rs1126616T-rs1126772A-rs9138C which demonstrated significant association with SLE in general (P = 0.02, OR = 1.30, 95%CI 1.08-1.57), especially in males (P = 0.0003, OR = 2.42, 95%CI 1.51-3.89). Subgroup analysis with single SNPs and haplotypes also identified a similar pattern of gender-specific association in AA and EA. GC, STRAT, and PCA results within each group showed consistent associations. Our data suggest SPP1 is associated with SLE, and this association is especially stronger in males. To our knowledge, this report serves as the first association of a specific autosomal gene with human male lupus.  相似文献   
60.
Plasmodium falciparum responsible for the most virulent form of malaria invades human erythrocytes through multiple ligand‐receptor interactions. The P. falciparum reticulocyte binding protein homologues (PfRHs) are expressed at the apical end of merozoites and form interactions with distinct erythrocyte surface receptors that are important for invasion. Here using a range of monoclonal antibodies (mAbs) against different regions of PfRH1 we have investigated the role of PfRH processing during merozoite invasion. We show that PfRH1 gets differentially processed during merozoite maturation and invasion and provide evidence that the different PfRH1 processing products have distinct functions during invasion. Using in‐situ Proximity Ligation and FRET assays that allow probing of interactions at the nanometre level we show that a subset of PfRH1 products form close association with micronemal proteins Apical Membrane Antigen 1 (AMA1) in the moving junction suggesting a critical role in facilitating junction formation and active invasion. Our data provides evidence that time dependent processing of PfRH proteins is a mechanism by which the parasite is able to regulate distinct functional activities of these large processes. The identification of a specific close association with AMA1 in the junction now may also provide new avenues to target these interactions to prevent merozoite invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号