首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15640篇
  免费   1230篇
  国内免费   7篇
  16877篇
  2024年   24篇
  2023年   96篇
  2022年   248篇
  2021年   456篇
  2020年   243篇
  2019年   313篇
  2018年   421篇
  2017年   368篇
  2016年   598篇
  2015年   867篇
  2014年   946篇
  2013年   1117篇
  2012年   1434篇
  2011年   1421篇
  2010年   882篇
  2009年   676篇
  2008年   1039篇
  2007年   923篇
  2006年   894篇
  2005年   852篇
  2004年   741篇
  2003年   623篇
  2002年   616篇
  2001年   107篇
  2000年   75篇
  1999年   107篇
  1998年   130篇
  1997年   92篇
  1996年   71篇
  1995年   54篇
  1994年   50篇
  1993年   57篇
  1992年   47篇
  1991年   29篇
  1990年   39篇
  1989年   41篇
  1988年   16篇
  1987年   22篇
  1986年   15篇
  1985年   18篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   14篇
  1980年   13篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   10篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
142.
143.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthases are metal-dependent enzymes that catalyse the first committed step in the biosynthesis of aromatic amino acids in microorganisms and plants, the condensation of 2-phophoenolpyruvate (PEP) and d-erythrose 4-phosphate (E4P) to DAHP. The DAHP synthases are possible targets for fungicides and represent a model system for feedback regulation in metabolic pathways. To gain further insight into the role of the metal ion and the catalytic mechanism in general, the crystal structures of several complexes between the tyrosine-regulated form of DAHP synthase from Saccharomyces cerevisiae and different metal ions and ligands have been determined. The crystal structures provide evidence that the simultaneous presence of a metal ion and PEP result in an ordering of the protein into a conformation that is prepared for binding the second substrate E4P. The site and binding mode of E4P was derived from the 1.5A resolution crystal structure of DAHP synthase in complex with PEP, Co2+, and the E4P analogue glyceraldehyde 3-phosphate. Our data suggest that the oxygen atom of the reactive carbonyl group of E4P replaces a water molecule coordinated to the metal ion, strongly favouring a reaction mechanism where the initial step is a nucleophilic attack of the double bond of PEP on the metal-activated carbonyl group of E4P. Mutagenesis experiments substituting specific amino acids coordinating PEP, the divalent metal ion or the second substrate E4P, result in stable but inactive Aro4p-derivatives and show the importance of these residues for the catalytic mechanism.  相似文献   
144.
Krapp A  Cano E  Simanis V 《FEBS letters》2004,565(1-3):176-180
The initiation of cytokinesis in the fission yeast Schizosaccharomyces pombe is signalled by the septation initiation network (SIN). Signalling originates from the spindle pole body (SPB), where SIN proteins are anchored by a scaffold composed of cdc11p and sid4p. Cdc11p links the other SIN proteins to sid4p and the SPB. Homologues of cdc11p have been identified in Saccharomyes cerevisiae (Nud1p) and human cells (Centriolin). We have defined functional domains of cdc11p by analysis of deletion mutants. We demonstrate that the C-terminal end of cdc11p is necessary for SPB localisation. We also show that the N-terminal domain is necessary and sufficient for signal transduction, since tethering of this domain to the SPB will substitute for cdc11p in SIN function.  相似文献   
145.
Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier‐driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail.  相似文献   
146.
147.
A selective differential medium for the isolation of Listeria monocytogenes   总被引:3,自引:6,他引:3  
A new medium has been developed for the isolation of Listeria monocytogenes from clinical specimens with a mixed flora. Almost complete inhibition of unwanted organisms was achieved and recognition of colonies of Listeria spp. was usually possible after 24 h using the aesculin-ferric ammonium citrate indicator system. Compared to McBride agar the new medium was more inhibitory to representative contaminating species in pure culture and more successful in isolating small numbers of L. monocytogenes from artificially seeded clinical specimens.  相似文献   
148.

Background  

Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding.  相似文献   
149.
Among the gynaecological malignancies, ovarian cancer is one of the neoplastic forms with the poorest prognosis and with the bad overall and disease-free survival rates than other gynaecological cancers. Ovarian tumors can be classified on the basis of the cells of origin in epithelial, stromal and germ cell tumors. Epithelial ovarian tumors display great histological heterogeneity and can be further subdivided into benign, intermediate or borderline, and invasive tumors. Several studies on ovarian tumors, have focused on the identification of both diagnostic and prognostic markers for applications in clinical practice. High-throughput technologies have accelerated the process of biomolecular study and genomic discovery; unfortunately, validity of these should be still demonstrated by extensive researches on sensibility and sensitivity of ovarian cancer novel biomarkers, determining whether gene profiling and proteomics could help differentiate between patients with metastatic ovarian cancer and primary ovarian carcinomas, and their potential impact on management. Therefore, considerable interest lies in identifying molecular and protein biomarkers and indicators to guide treatment decisions and clinical follow up. In this review, the current state of knowledge about the genoproteomic and potential clinical value of gene expression profiling in ovarian cancer and ovarian borderline tumors is discussed, focusing on three main areas: distinguishing normal ovarian tissue from ovarian cancers and borderline tumors, identifying different genotypes of ovarian tissue and identifying proteins linked to cancer or tumor development. By these targets, authors focus on the use of novel molecules, developed on the proteomics and genomics researches, as potential protein biomarkers in the management of ovarian cancer or borderline tumor, overlooking on current state of the art and on future perspectives of researches.Key Words: Ovarian cancer, borderline ovarian tumors, markers, genomics, proteomics, oncogenes.  相似文献   
150.
Clones of Norway spruce (Picea abies L.) were grown for several years on an altitudinal gradient (1750 m, 1150 m and 800 m above sea level) to study the effects of environmental × genetic interactions on growth and foliar metabolites (protein, pigments, antioxidants). Clones at the tree line showed 4.3-fold lower growth rates and contained 60% less chlorophyll (per gram of dry matter) than those at valley level. The extent of growth reduction was clone-dependent. The mortality of the clones was low and not altitude-dependent. At valley level, but not at high altitude, needles of mature spruce trees showed lower pigment and protein concentrations than clones. In general, antioxidative systems in needles of the mature trees and young clones did not increase with increasing altitude. Needles of all trees at high altitude showed higher concentrations of dehydroascorbate than at lower altitudes, indicating higher oxidative stress. In one clone, previously identified as sensitive to acute ozone doses, this increase was significantly higher and the growth reduction was stronger than in the other genotypes. This clone also displayed a significant reduction in glutathione reductase activity at high altitude. These results suggest that induction of antioxidative systems is apparently not a general prerequisite to cope with altitude in clones whose mother plants originated from higher altitudes (about 650–1100 m above sea level, Hercycnic-Carpathian distribution area), but that the genetic constitution for maintenance of high antioxidative protection is important for stress compensation at the tree line. Received: 13 October 1998 / Accepted: 22 June 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号