首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2897篇
  免费   315篇
  国内免费   2篇
  2023年   10篇
  2022年   31篇
  2021年   59篇
  2020年   34篇
  2019年   35篇
  2018年   50篇
  2017年   50篇
  2016年   74篇
  2015年   131篇
  2014年   145篇
  2013年   195篇
  2012年   212篇
  2011年   190篇
  2010年   121篇
  2009年   110篇
  2008年   167篇
  2007年   181篇
  2006年   129篇
  2005年   143篇
  2004年   157篇
  2003年   132篇
  2002年   123篇
  2001年   53篇
  2000年   45篇
  1999年   40篇
  1998年   34篇
  1997年   38篇
  1996年   27篇
  1995年   23篇
  1994年   24篇
  1993年   25篇
  1992年   27篇
  1991年   22篇
  1990年   33篇
  1989年   27篇
  1988年   23篇
  1987年   20篇
  1986年   15篇
  1985年   12篇
  1984年   16篇
  1983年   14篇
  1982年   14篇
  1981年   19篇
  1979年   22篇
  1978年   23篇
  1977年   9篇
  1976年   11篇
  1975年   16篇
  1962年   7篇
  1956年   7篇
排序方式: 共有3214条查询结果,搜索用时 171 毫秒
201.
202.
The interleukin-6 (IL-6) receptor complex comprises the IL-6 receptor (IL-6R, gp80) and the signal transducer gp130. Binding of IL-6 to its receptor results in dimerization of gp130, activation of the Jak/STAT pathway, and in a down-regulation of IL-6 binding sites by endocytosis. The STAT activation after stimulation is transient, being maximal after 15-30 min and disappearing after 60-90 min. The mechanism which leads to the termination of the signal is still unknown.In this paper we have studied whether the down-modulation of the STAT signal requires the endocytosis of the receptor complex. Our results suggest that the desensitization of the IL-6 signal is not due to internalization of the receptor complex but requires de novo protein synthesis.  相似文献   
203.
The mechanism by which ATP-sensitive K+ (KATP) channels open in the presence of inhibitory concentrations of ATP remains unknown. Herein, using a four-state kinetic model, we found that the nucleotide diphosphate UDP directed cardiac KATP channels to operate within intraburst transitions. These transitions are not targeted by ATP, nor the structurally unrelated sulfonylurea glyburide, which inhibit channel opening by acting on interburst transitions. Therefore, the channel remained insensitive to ATP and glyburide in the presence of UDP. “Rundown” of channel activity decreased the efficacy with which UDP could direct and maintain the channel to operate within intraburst transitions. Under this condition, the channel was sensitive to inhibition by ATP and glyburide despite the presence of UDP. This behavior of the KATP channel could be accounted for by an allosteric model of ligand-channel interaction. Thus, the response of cardiac KATP channels towards inhibitory ligands is determined by the relative lifetime the channel spends in a ligand-sensitive versus -insensitive state. Interconversion between these two conformational states represents a novel basis for KATP channel opening in the presence of inhibitory concentrations of ATP in a cardiac cell.  相似文献   
204.
205.
In the present study we show that K+/H+ hydroxyl-containing ionophores lasalocid-A (LAS) and nigericin (NIG) in the nanomolar concentration range, inhibit Fe2+-citrate and 2,2'-azobis(2-amidinopropane) di-hydrochloride (ABAP)-induced lipid peroxidation in intact rat liver mitochondria and in egg phosphatidyl-choline (PC) liposomes containing negatively charged lipids—dicetyl phosphate (DCP) or cardiolipin (CL)—and KCl as the osmotic support. In addition, monensin (MON), a hydroxyl-containing ionophore with higher affinity for Na+ than for K+, promotes a similar effect when NaCl is the osmotic support. The protective effect of the ionophores is not observed when the osmolyte is sucrose. Lipid peroxidation was evidenced by mitochondrial swelling, antimycin A-insensitive O2 consumption, formation of thiobarbituric acid-reactive substances (TBARS), conjugated dienes, and electron paramagnetic resonance (EPR) spectra of an incorporated lipid spin probe. A time-dependent decay of spin label EPR signal is observed as a consequence of lipid peroxidation induced by both inductor systems in liposomes. Nitroxide destruction is inhibited by buty-lated hydroxytoluene, a known antioxidant, and by the hydroxyl-containing ionophores. In contrast, vali-nomycin (VAL), which does not possess alcoholic groups, does not display this protective effect. Effective order parameters (Seff), determined from the spectra of an incorporated spin label are larger in the presence of salt and display a small increase upon addition of the ionophores, as a result of the increase of counter ion concentration at the negatively charged bilayer surface. This condition leads to increased formation of the ion-ionophore complex, the membrane binding (uncharged) species. The membrane-incorporated complex is the active species in the lipid peroxidation inhibiting process. Studies in aqueous solution (in the absence of membranes) showed that NIG and LAS, but not VAL, decrease the Fe2+-citrate-induced production of radicals derived from piperazine-based buffers, demonstrating their property as radical scavengers. Both Fe2+-citrate and ABAP promote a much more pronounced decrease of LAS fluorescence in PC/CL liposomes than in dimyristoyl phosphatidyl-choline (DMPC, saturated phospholipid)-DCP liposomes, indicating that the ionophore also scavenges lipid peroxyl radicals. A slow decrease of fluorescence is observed in the latter system, for all lipid compositions in sucrose medium, and in the absence of membranes, indicating that the primary radicals stemming from both inductors also attack the ionophore. Altogether, the data lead to the conclusion that the membrane-incorporated cation complexes of NIG, LAS and MON inhibit lipid peroxidation by blocking initiation and propagation reactions in the lipid phase via a free radical scavenging mechanism, very likely due to the presence of alcoholic hydroxyl groups in all three molecules and to the attack of the aromatic moiety of LAS.  相似文献   
206.
ESR experiments with 2,2,6,6-tetramethyl-4-piperi-done (4-oxo-TEMP) and the spin-trap 5,5-dimethyl pyrroline-N-oxide (DMPO) have been performed on a series of new phthalocyanines: the bis(tri-n-hexyl-siloxy) silicon phthalocyanine ([(nhex)3SiO]2SiPc), the hexadecachloro zinc phthalocyanine (ZnPcCl16), the hexadecachloro aluminum phthalocyanine (AlPcCl16), the hexadecachloro aluminum phthalocyanine sulfate (HSO4A1PcCl16), whose photocytotoxicity has been studied against various leukemic and melanotic cell lines. Type I and Type II pathways occur simultaneously in DMF although the Type II seems to be prevalent. These results are not changed when the bis(tri-n-hexylsiloxy) silicon phthalocyanine is entrapped into liposomes. By contrast, the Type I process is favored in membrane models for all the perchlori-nated phthalocyanines. This modified behavior may be accounted on a possible stacking of phthalocyanines in membranes and a preventing effect of axial ligands against aggregation in the case of the bis(tri-n-hexyl-siloxy) silicon phthalocyanine. The photodynamic action of zinc perchlorinated phthalocyanine is not dependent on singlet oxygen, phototoxicity of this molecule being essentially mediated by oxygen free radicals. Quantitation of the superoxide radical was accomplished, with good agreement, by two techniques: the cytochrome c reduction and the ESR quantitation based on the double integration of the first derivative of the ESR signal. The disproportionation of the superoxide radical or degradation of the spin-trap seem to be avoided in aprotic solvents such as DMF.  相似文献   
207.
208.
We present a consumer-resource model in which individual consumers subsist on a continuum of resource distributed over a very large number of small “bite-sized” patches, each patch being sufficiently small that all its resource is eaten whenever a consumer visits. This form of consumer–resource interaction forces a heterogeneous distribution of resource among the patches, and may dampen out the large amplitude, consumer-resource cycles that are predicted by traditional models of well-mixed, spatially homogeneous systems. The resource equilibrium does not increase with enrichment, a prediction that distinguishes this model from models that invoke direct or indirect consumer density dependence as a stabilizing mechanism.  相似文献   
209.
Rib cage muscle interaction in airway pressure generation   总被引:6,自引:0,他引:6  
We have previously demonstrated in dogs that the change inairway opening pressure (Pao) produced by isolated maximumactivation of the parasternal intercostal or triangularis sterni musclein a single interspace, the sternomastoids, and the scalenes isproportional to the product of muscle mass and the fractional change inmuscle length per unit volume increase of the relaxed chest wall. In the present study, we have assessed the interactions between these muscles by comparing the Pao obtained during simultaneous activation of a pair of muscles (measured Pao) to the sum of the Pao values obtained during their separate activation (predicted Pao). Measured and predicted Pao values were compared for the following pairs ofmuscles: the parasternal intercostals in two interspaces, the parasternal intercostals in one interspace and either thesternomastoids or the scalenes, two segments of the triangularissterni, and the interosseous intercostals in two contiguousinterspaces. For all these pairs, the measured Pao was within~10% of the predicted value. We therefore conclude that1) the pressure changes generated bythe rib cage muscles are essentially additive; and2) measurements of the mass of aparticular muscle and of its fractional change in length during passiveinflation can be used to estimate the potential pressure-generatingability of the muscle during coordinated activity as well as duringisolated activation.

  相似文献   
210.
Structurally unique among ion channels, ATP-sensitive K+ (KATP) channels are essential in coupling cellular metabolism with membrane excitability, and their activity can be reconstituted by coexpression of an inwardly rectifying K+ channel, Kir6.2, with an ATP-binding cassette protein, SUR1. To determine if constitutive channel subunits form a physical complex, we developed antibodies to specifically label and immunoprecipitate Kir6.2. From a mixture of Kir6.2 and SUR1 in vitro-translated proteins, and from COS cells transfected with both channel subunits, the Kir6.2-specific antibody coimmunoprecipitated 38- and 140-kDa proteins corresponding to Kir6.2 and SUR1, respectively. Since previous reports suggest that the carboxy-truncated Kir6.2 can form a channel independent of SUR, we deleted 114 nucleotides from the carboxy terminus of the Kir6.2 open reading frame (Kir6.2ΔC37). Kir6.2ΔC37 still coimmunoprecipitated with SUR1, suggesting that the distal carboxy terminus of Kir6.2 is unnecessary for subunit association. Confocal microscopic images of COS cells transfected with Kir6.2 or Kir6.2ΔC37 and labeled with fluorescent antibodies revealed unique honeycomb patterns unlike the diffuse immunostaining observed when cells were cotransfected with Kir6.2-SUR1 or Kir6.2ΔC37-SUR1. Membrane patches excised from COS cells cotransfected with Kir6.2-SUR1 or Kir6.2ΔC37-SUR1 exhibited single-channel activity characteristic of pancreatic KATP channels. Kir6.2ΔC37 alone formed functional channels with single-channel conductance and intraburst kinetic properties similar to those of Kir6.2-SUR1 or Kir6.2ΔC37-SUR1 but with reduced burst duration. This study provides direct evidence that an inwardly rectifying K+ channel and an ATP-binding cassette protein physically associate, which affects the cellular distribution and kinetic behavior of a KATP channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号