首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2129篇
  免费   197篇
  国内免费   2篇
  2023年   7篇
  2022年   29篇
  2021年   48篇
  2020年   26篇
  2019年   31篇
  2018年   37篇
  2017年   41篇
  2016年   57篇
  2015年   113篇
  2014年   117篇
  2013年   148篇
  2012年   166篇
  2011年   154篇
  2010年   102篇
  2009年   87篇
  2008年   130篇
  2007年   139篇
  2006年   100篇
  2005年   106篇
  2004年   112篇
  2003年   102篇
  2002年   92篇
  2001年   23篇
  2000年   14篇
  1999年   16篇
  1998年   18篇
  1997年   25篇
  1996年   12篇
  1995年   10篇
  1994年   7篇
  1993年   15篇
  1992年   11篇
  1991年   12篇
  1990年   19篇
  1989年   12篇
  1988年   9篇
  1987年   12篇
  1986年   7篇
  1984年   11篇
  1983年   8篇
  1982年   11篇
  1981年   11篇
  1980年   7篇
  1979年   14篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1974年   6篇
  1965年   7篇
  1962年   6篇
排序方式: 共有2328条查询结果,搜索用时 15 毫秒
111.
112.
The histone H2A variant H2AX is phosphorylated in response to DNA double-strand breaks originating from diverse origins, including dysfunctional telomeres. Here, we show that normal mitotic telomere maintenance does not require H2AX. Moreover, H2AX is dispensable for the chromosome fusions arising from either critically shortened or deprotected telomeres. However, H2AX has an essential role in controlling the proper topological distribution of telomeres during meiotic prophase I. Our results suggest that H2AX is a downstream effector of the ataxia telangiectasia-mutated kinase in controlling telomere movement during meiosis.  相似文献   
113.
In the present study, we used the human EA.hy926 endothelial cell line as the model system to investigate the effect of human serum albumin (HSA) and its structural variants on cholesterol efflux. Initial studies showed that HSA promoted cholesterol efflux in a dose- and time-dependent manner, reaching a plateau at 10 mg/ml at 90 min. As a control, gelatin displayed no significant effect on efflux, while HSA was significantly more efficient than ovalbumin and bovine serum albumin (BSA) in promoting cholesterol efflux. Equal molar concentrations of HSA and apolipoprotein A-I (apoA-I) showed that apoA-I had considerably higher efficiency in efflux. However, the prevailing high plasma concentrations of HSA may compensate for its lower efflux rate compared to apoA-I. To characterize the mechanism of HSA-mediated cholesterol efflux, we studied the effects of cAMP and temperature on efflux using both EA.hy926 endothelial cells and murine RAW 264.7 macrophages. We found that HSA-mediated efflux occurred via a cAMP-independent and relatively temperature-insensitive pathway. We next examined the nature of HSA-cholesterol interaction by comparing the effects of various HSA mutants to wild-type HSA on cholesterol efflux. We found specific interactions between subdomains 2A and 3A and cholesterol, as indicated by the changes in the efflux rate of various HSA mutants. In conclusion, our study provides evidence for the role of HSA in cholesterol efflux, and shows that the substitution of specific amino acid residues in subdomains of 2A and 3A may be important structural determinants in its ability to bind to cholesterol and participate in cholesterol efflux.  相似文献   
114.
115.
Three-dimensional networks of filamentous actin (F-actin) encapsulated inside phosphatidylcholine liposomes are currently being used in an effort to model the cytoskeleton and plasma membrane of eukaryotic cells. In this article, unilamellar lipid vesicles consisting of egg yolk-derived phosphatidylcholine encapsulating monomeric actin (G-actin) were made via extrusion in low ionic strength buffer (G-buffer). Vesicle shape and structure in these dispersions was studied using a combination of fluid-tapping atomic force microscopy, and multiangle static light scattering. After subjecting the liposome dispersion to high ionic strength polymerization buffer (F-buffer) containing K(+) ions, atomic force microscopy imaging and light scattering of these liposomes indicated the formation of specialized structures, including an overall liposome structure transformation from spherical to torus, disk-shaped geometries and tubular assemblies. Several atomic force microscopy control measurements were made to ascertain that the specialized structures formed were not due to free G-actin and F-actin self-assembling on the sample surface, plain liposomes exposed to G- and F-buffer, or liposomes encapsulating G-actin. Liposomes encapsulating G-actin assumed mostly thin disk shapes and some large irregularly shaped aggregates. In contrast, liposomes encapsulating polymerized actin assumed mostly torus or disk shapes along with some high aspect ratio tubular structures.  相似文献   
116.
Years of careful experimental analysis have revealed that signaling molecules are organized into complex networks of biochemical reactions exquisitely regulated in time and space to provide a cell with high-fidelity information about an extremely noisy and volatile environment. A new view of signaling networks as systems consisting of multiple complex elements interacting in a multifarious fashion is emerging, a view that conflicts with the single-gene or protein-centric approach common in biological research. The postgenomic era has brought about a different, network-centric methodology of analysis, suddenly forcing researchers toward the opposite extreme of complexity, where the networks being explored are, to a certain extent, intractable and uninterpretable. Both the cartoons of simple pathways and the very large "hair-ball" diagrams of large intracellular networks are also representations of static worlds, superficially devoid of dynamics and chemistry. These representations are often viewed as being analogous to stably linked computer and neural networks rather than dynamically changing networks of chemical interactions, where the notions of concentration, compartmentalization, and diffusion may be the primary determinants of connectivity. Arguably, the systems biology approach, relying on computational modeling coupled with various experimental techniques and methodologies, will be an essential component of analysis of the behavior of signal transduction pathways. Combining the dynamical view of rapidly evolving responses and the structural view arising from high-throughput analyses of the interacting species will be the best approach toward efforts toward greater understanding of intracellular signaling processes.  相似文献   
117.
Listeria monocytogenes is an opportunistic intracellular pathogen capable of growth that requires iron for growth within phagocytic cells and virulence expression. In the presence of an appropriate concentration tropolone, an iron-chelating agent, growth of L. monocytogenes is completely inhibited. However, this inhibition can be relieved by addition of dopamine, norepinephrine, or ferric citrate. By selection on streptonigrin medium supplemented with tropolone and norepinephrine, we have obtained two spontaneous mutants, Lm-8 and Lm-15, with the same iron dependence but lower iron dependence than the wild-type Lm-B38. The association between iron requirement and virulence of the two mutants and the wild type was studied in the J774 macrophage cell line. One hour after phagocytosis by the J774 macrophage cell line, the two mutants and the parental strain displayed no difference in the number of phagocytosed bacteria. Twenty-four hours after phagocytosis, the number of bacteria within the surviving macrophages was identical for the wild strain and the two clones. However, only 40% of macrophage cells infected with Lm-8 and 90% of those infected with Lm-15 were alive after 24 h in comparison with macrophage cells infected with the parental strain Lm-B38. These data demonstrate that there is no direct correlation between iron requirement and virulence of L. monocytogenes in the J774 macrophage cell line.  相似文献   
118.
To determine whether reduction of insulin resistance could ameliorate fructose-induced very low density lipoprotein (VLDL) oversecretion and to explore the mechanism of this effect, fructose-fed hamsters received placebo or rosiglitazone for 3 weeks. Rosiglitazone treatment led to normalization of the blunted insulin-mediated suppression of the glucose production rate and to a approximately 2-fold increase in whole body insulin-mediated glucose disappearance rate (p < 0.001). Rosiglitazone ameliorated the defect in hepatocyte insulin-stimulated tyrosine phosphorylation of the insulin receptor, IRS-1, and IRS-2 and the reduced protein mass of IRS-1 and IRS-2 induced by fructose feeding. Protein-tyrosine phosphatase 1B levels were increased with fructose feeding and were markedly reduced by rosiglitazone. Rosiglitazone treatment led to a approximately 50% reduction of VLDL secretion rates (p < 0.05) in vivo and ex vivo. VLDL clearance assessed directly in vivo was not significantly different in the FR (fructose-fed + rosiglitazone-treated) versus F (fructose-fed + placebo-treated) hamsters, although there was a trend toward a lower clearance with rosiglitazone. Enhanced stability of nascent apolipoprotein B (apoB) in fructose-fed hepatocytes was evident, and rosiglitazone treatment resulted in a significant reduction in apoB stability. The increase in intracellular mass of microsomal triglyceride transfer protein seen with fructose feeding was reduced by treatment with rosiglitazone. In conclusion, improvement of hepatic insulin signaling with rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist, is associated with reduced hepatic VLDL assembly and secretion due to reduced intracellular apoB stability.  相似文献   
119.
120.
CD28 provides a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell activation, cytokine production, and clonal expansion. We have recently shown that CD28 directly regulates progression of T lymphocytes through the cell cycle. Although a number of signaling pathways have been linked to the TCR/CD3 and to CD28, it is not known how these two receptors cooperate to induce cell cycle progression. Here, using cell-permeable pharmacologic inhibitors of phosphatidylinositol 3-hydroxykinase (PI3K) and mitogen-activated protein kinase kinase (MEK1/2), we show that cell cycle progression of primary T lymphocytes requires simultaneous activation of PI3K- and MEK1/2-dependent pathways. Decreased abundance of cyclin-dependent kinase inhibitor p27(kip1), which requires simultaneous TCR/CD3 and CD28 ligation, was dependent upon both MEK and PI3K activity. Ligation of TCR/CD3, but not CD28 alone, resulted in activation of MEK targets extracellular signal-related kinase 1/2, whereas ligation of CD28 alone was sufficient for activation of PI3K target protein kinase B (PKB; c-Akt). CD28 ligation alone was also sufficient to mediate inactivating phosphorylation of PKB target glycogen synthase kinase-3 (GSK-3). Moreover, direct inactivation of GSK-3 by LiCl in the presence of anti-CD3, but not in the presence of anti-CD28, resulted in down-regulation of p27(kip1), hyperphosphorylation of retinoblastoma tumor suppressor gene product, and cellular proliferation. Thus, inactivation of the PI3K-PKB target GSK-3 could substitute for CD28 but not for CD3 signals. These results show that the PI3K-PKB pathway links CD28 to cell cycle progression and suggest that p27(kip1) integrates mitogenic MEK- and PI3K-dependent signals from TCR and CD28 in primary T lymphocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号